Mooculus calculus-2: Sequence and progression study note 6. Power Series

Source: Internet
Author: User

This course (MOOCULUS-2 "sequences and Series") was taught by Ohio State University on the Coursera platform in 2014.

PDF textbook Download sequences and Series

This series of learning notes PDF download (academia.edu) MOOCULUS-2 solution

Summary

  • Let $ (a_n) $ is a sequence of real numbers starting with $a _0$. Then the power series associated to $ (a_n) $ are $$\sum_{n=0}^\infty a_n \, x^n.$$ Note that $a _n$ does not depend On $x $.
  • The set of values of $x $ for which the series $$\sum_{n=0}^\infty a_n \, x^n$$ converges is the interval of Convergenc E. is, by ratio test we have $$\lim_{n\to\infty}{|a_{n+1}\cdot X^{n+1}|\over|a_n\cdot x^{n}|} =|x|\cdot\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} < 1$$ it'll converge. Technically, $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over |a_n|} $$
  • For a power series, the interval of convergence are, in fact, an interval. It has the form $ (-r,r) $ or $[-r,r) $ or $ (-r,r]$ or $[-r,r]$. In short, it is centered around $0$.
  • In the interval of convergence of a power series, the value $R $ is called the radius of convergence of the series .
  • Let $ (a_n) $ is a sequence of real numbers starting with $a _0$. Then the power series centered in $c $ and associated to $ (A_n) $ are the series $$\sum_{n=0}^\infty a_n \, (X-C) ^n. $$ that's, the interval of convergence is $I = (c-r, c+r) $ (or include the endpoints).
  • Suppose the power series $ $f (x) =\sum_{n=0}^\infty A_n (x-a) ^n=a_0+a_1\cdot (x-a) +a_2\cdot (x-a) ^2+\cdots$$ has radius of Convergence $R $. Then $ $f ' (x) =a_1+2a_2\cdot (x-a) +\cdots=\sum_{n=1}^\infty na_n (x-a) ^{n-1}$$ $$\int f (x) \,dx = c+\sum_{n=0}^\infty {A_n \over n+1} (x-a) ^{n+1}$$ for interval of $x $ in the interval $ (a-r, A+r) $. These the new series has radius of convergence $R $, just like the original series.

Exercises 6.3

Find the radius and interval of convergence for each series. In exercises 3 and 4, does not attempt to determine whether the endpoints is in the interval of convergence.

1. $$\sum_{n=0}^\infty n x^n$$

Solution: $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} =\lim_{n\to\infty}{n+1\over n}=1$$ Thus $R =1$. When $x =\pm1$, the series is $\sum_{n=0}^{\infty}n$ and $\sum_{n=0}^{\infty} ( -1) ^n\cdot n$, which is diverge. Therefore the interval of convergence is $I = (-1, 1) $.

2. $$\sum_{n=0}^\infty {x^n\over n!} $$  

Solution: $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} =\lim_{n\to\infty}{n!\over (n+1)!} =\lim_{n\to\infty}{1\over n+1}=0$$ Thus $R =\infty$ and the interval of convergence is $I = (-\infty, \infty) $.

3. $$\sum_{n=1}^\infty {n!\over n^n}x^n$$

Solution: $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} =\lim_{n\to\infty}{(n+1)!\over (n+1) ^{n+1}}\cdot{n^n\over n!} =\lim_{n\to\infty} ({N\over n+1}) ^n={1\over e}$$ Thus $R =e$ and the interval of convergence is $I = (-E, E) $.

4. $$\sum_{n=1}^\infty {n!\over n^n} (x-2) ^n$$

Solution: $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} =\lim_{n\to\infty}{(n+1)!\over (n+1) ^{n+1}}\cdot{n^n\over n!} =\lim_{n\to\infty} ({N\over n+1}) ^n={1\over e}$$ Thus $R =e$ and the interval of convergence is $I = (2-E, 2+e) $.

5. $$\sum_{n=1}^\infty {(n!) ^2\over n^n} (x-2) ^n$$

Solution: $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} =\lim_{n\to\infty}{[(n+1)!] ^2\over (n+1) ^{n+1}}\cdot{n^n\over (n!) ^2}=\lim_{n\to\infty}{(n+1) ^2\over (n+1) ^{n+1}}\cdot n^n$$ $$=\lim_{n\to\infty} (n+1) \cdot ({n\over n+1}) ^n={1\over E }\cdot\lim_{n\to\infty} (n+1) =\infty$$ Thus $R =0$ and it converges only on $x =2$ and diverges otherwise.

6. $$\sum_{n=1}^\infty {(x+5) ^n\over N (n+1)}$$

Solution: $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} =\lim_{n\to\infty}{n (n+1) \over (n+1) (n+2)}=1$$ Thus $R =1$ and the endpoints are $x _1=-5-1=-6$ and $x _2=-5+1=-4$. Both of them are convergent. The interval of convergence is $I =[-6, -4]$.

7. Find a power series with radius of convergence $0$.  

Solution:

There is many choices---for instance, see Exercise 5---Alternatively $\sum_{n=0}^\infty n! \cdot x^n$ also works.

Exercises 6.4

1. Find a series representation for $\log 2$.

Solution:

Begin with the geometric series, namely $${1\over1-x}=\sum_{n=0}^{\infty}x^n\rightarrow \int {1\over1-x}dx=-\log|1-x|= \sum_{n=0}^{\infty}{1\over n+1} x^{n+1}$$ so $x =-1$ and the result is $$\log2=-\sum_{n=0}^{\infty}{( -1) ^{n+1}\over n+1} = \sum_{n=0}^{\infty}{( -1) ^{n} \over n+1}$$

2. Find a power series representation for $1/(1-x) ^2$.

Solution: $${1\over1-x}=\sum_{n=0}^{\infty}x^n\rightarrow ({1\over1-x}) ' ={1\over (1-x) ^2}=\sum_{n=1}^{\ infty}nx^{n-1}$$

3. Find a power series representation for $2/(1-x) ^3$.

Solution: $${1\over1-x}=\sum_{n=0}^{\infty}x^n\rightarrow ({1\over1-x}) ' ={1\over (1-x) ^2}=\sum_{n=1}^{\ infty}nx^{n-1}$$ $$\rightarrow ({1\over1-x}) ' ={2\over (1-x) ^3}=\sum_{n=2}^{\infty}n (n-1) x^{n-2}$$

4. Find A power series representation for $1/(1-x) ^3$. What is the radius of convergence?

Solution:

According to the above exercise, we have $${1\over (1-x) ^3}=\sum_{n=2}^{\infty}{n (n-1) \over2}x^{n-2}=\sum_{n=0}^{\ infty}{(n+1) (n+2) \over2}x^{n}$$ and $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} =\lim_{n\to\infty}{(n+2) (n+3) \over (n+1) (n+2)}=1$$ Thus The radius is $R =1$.

5. Find a power series representation for $\int\log (1-x) \,dx$.

Solution: $$\log (1-x) =-\int {1\over1-x}dx=-\int\sum_{n=0}^{\infty}x^n Dx=\sum_{n=0}^{\infty}{-1\over n+1} x^{n+1}$$ $$\rightarrow \int\log (1-x) dx=\int\sum_{n=0}^{\infty}{-1\over n+1}x^{n+1}dx=c+\sum_{n=0}^{\infty}{-1\ Over (n+1) (n+2)}x^{n+2}$$

Additional Exercises

1. For which real number $x $ does the series $$\sum_{m=4}^{\infty}{({1\OVER6}) ^m\cdot x^m\over7m}$$ converge.

Solution:

Let $a _m={({1\OVER6}) ^m\over7m}$, we have $${1\over r}=\lim_{m\to\infty}{|a_{m+1}|\over |a_m|} =\lim_{m\to\infty}{({1\OVER6}) ^{m+1}\over7 (m+1)}\cdot{7m\over ({1\over6}) ^m}={1\over6}$$ Thus $R =6$. The endpoints is $x _1=-6$ and $x _2=6$. When $x =-6$, we have $$\sum_{m=4}^{\infty}{({1\OVER6}) ^m\cdot x^m\over7m}=\sum_{m=4}^{\infty}{( -1) ^m\over7m}$$ which is an alternating harmonic series, and it converges. When $x =6$, we had $$\sum_{m=4}^{\infty}{({1\OVER6}) ^m\cdot x^m\over7m}=\sum_{m=4}^{\infty}{1\over7m}$$ which is Harmonic series, and it diverges. Thus the interval of converges is $I =[-6, 6) $.

2. Which is the radius of convergence of the series $$\sum_{n=4}^{\infty}{(8^n+n) \cdot x^n\over3n}$$

Solution:

Let $a _n={8^n+n\over3n}$, we have $${1\over r}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} =\lim_{n\to\infty}{8^{n+1}+n+1\over3 (n+1)}\cdot{3n\over 8^n+n}=8$$ Thus The radius is $R ={1\over8}$.

3. $ $f (x) =\sum_{n=0}^{\infty}-{(5n+3) x^n\over2n-3}$$ consider $f ' (x) $.

Solution: $ $f ' (x) =\sum_{n=1}^{\infty}-{5n+3\over2n-3}\cdot N\cdot x^{n-1}=\sum_{n=0}^{\infty}-{5 (n+1) +3\ Over2 (n+1) -3}\cdot (n+1) \cdot x^{n+1-1}$$ $$=\sum_{n=0}^{\infty}-{5n+8\over2n-1}\cdot (n+1) \cdot x^{n}$$

4. Suppose $$\sum_{n=1}^{\infty}b_n={2\over (2x-1) ^2}$$ Find An expression of $b _n$ (involve $x $).

Solution:

Let $F (x) =\sum_{n=1}^{\infty}b_n={2\over (2x-1) ^2}$, we have $$\int F (x) =\int {2\over (2x-1) ^2} dx=\int{d (2x-1) \over ( 2X-1) ^2}={1\over1-2x}=f (x) $$ on the other hand, $ $f (x) ={1\over1-2x}=\sum_{n=0}^{\infty} (2x) ^n$$ Thus $ $F (x) =f ' (x) =\ Sum_{n=1}^{\infty}2^n\cdot N\cdot x^{n-1}$$ $$\rightarrow b_n=2^n\cdot N\cdot x^{n-1}$$

5. Suppose $$\sum_{n=1}^{\infty}b_n={9x\over (9x^2-1) ^2}$$ Find An expression of $b _n$ (involve $x $).

Solution:

Let $F (x) =\sum_{n=1}^{\infty}b_n={9x\over (9x^2-1) ^2}$, we have $$\int F (x) =\int {9x\over (9x^2-1) ^2}dx={1\over2}\cdot \int {d (9x^2-1) \over (9x^2-1) ^2}={1\over2}\cdot{1\over1-9x^2}=f (x) $$ on the other hand, $ $f (x) ={1\over2}\cdot\sum_{n= 0}^{\infty} (9x^2) ^n$$ Thus $ $F (x) =f ' (x) ={1\over2}\cdot\sum_{n=1}^{\infty}9^n\cdot 2n\cdot x^{2n-1}$$ $$\Rightarrow b _n=9^n\cdot N\cdot x^{2n-1}$$

6. Consider the function $ $f (t) =\int_{0}^{t}e^{-x^2}dx$$ Compute $f ({3\over2}) $ to within ${1\over2}$.

Solution:

Note that the Power series (Taylor series) of $e ^x$ is $ $e ^x=\sum_{n=0}^{\infty}{x^n\over n!} $$ Thus We have $ $e ^{-x^2}=\sum_{n=0}^{\infty}{{(-x^2)}^n\over n!} =\sum_{n=0}^{\infty}{( -1) ^n\cdot X^{2n}\over n!} $$ $$\rightarrow F (t) =\int_{0}^{t}e^{-x^2}dx=\int_{0}^{t}\sum_{n=0}^{\infty}{( -1) ^n\cdot X^{2n}\over n!} dx$$ $$=\sum_{n=0}^{\infty}{( -1) ^n\over n!} \cdot\int_{0}^{t}x^{2n}dx=\sum_{n=0}^{\infty}{( -1) ^n\over n!} \cdot{1\over 2n+1}x^{2n+1}\big|_{0}^{t}$$ $$=\sum_{n=0}^{\infty}{( -1) ^n\over n!} \cdot{1\over 2n+1}t^{2n+1}$$ $$\rightarrow f ({3\over2}) =\sum_{n=0}^{\infty}{( -1) ^n\over n!} \cdot{1\over 2n+1} ({3\over2}) ^{2n+1}=a_n$$ Our aim was to find a $|a_n| < 0.5$ and by computing in R:

f = function (x) ( -1) ^x/factorial (x) * 1/(2 * x + 1) * (3/2) ^ (2 * x + 1) for (i in 0:100) {  if (f (i) < 0.5 & f (i) > -0.5) {    print (i)    print (f (x = 0:i))    print ((SUM (f (0:i)) + sum (f (0: (i-1)))/2) Break  }}# [1 ] 3# [1]  1.500000-1.125000  0.759375-0.406808# [1] 0.930971

That's, $ $a _0=1.5,\ a_1=-1.125,\ a_2=0.759375,\ a_3=-0.406808 \in ( -0.5, 0.5) $$ Thus The value within 0.5 is $${1\over2}\ CDOT (S_2+s_3) =0.930971$$

Mooculus calculus-2: Sequence and progression study note 6. Power Series

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.