Finally, I have finished writing the template of the network stream. I have to paste a few files and use the forward star to save and save the trouble of writing the linked list, the code is definitely the most streamlined in the code you can find
// Ek
# Include <stdio. h>
# Include <iostream>
Using namespace STD;
# Include <memory. h>
# Define maxn300
# Define maxflow 2000000000
Int N, S, T, M, flow [maxn + 1] [maxn + 1], map [maxn + 1] [maxn + 1], pre [maxn + 1];
Void Init ()
{
Int I, A, B, C;
Memset (MAP, 0, sizeof (MAP ));
Memset (flow, 0, sizeof (flow ));
Memset (PRE, 0, sizeof (pre ));
Cin> N> S> T> m;
For (I = 1; I <= m; I ++)
{
Cin> A> B> C;
Map [a] [0] ++;
Map [a] [map [a] [0] = B;
Map [B] [0] ++;
Map [B] [map [B] [0] =;
Flow [a] [B] + = C; // for the existence of the duplicate edge, we recommend that you use + =
}
}
Int BFS ()
{
Int I, TT [maxn + 1], start, finish, chk [maxn + 1], K;
Memset (TT, 0, sizeof (TT ));
Memset (chk, 0, sizeof (chk ));
Start = 1; finish = 1; TT [1] = s;
While (start <= finish)
{
For (I = 1; I <= map [TT [start] [0]; I ++)
If ((! Chk [map [TT [start] [I]) & (flow [TT [start] [map [TT [start] [I])
{
K = map [TT [start] [I];
Finish ++;
TT [finish] = K;
Chk [k] = 1;
Pre [k] = TT [start];
If (k = T) return 1;
}
Start ++;
}
Return 0;
}
Int min (int A, int B)
{
If (A <B) return;
Else return B;
}
Int main ()
{
Int ans, K, V;
Init ();
Ans = 0;
While (BFS ())
{
K = T; V = maxflow;
While (K! = S)
{
V = min (v, flow [pre [k] [k]);
K = pre [k];
}
K = T; ans + = V;
While (K! = S)
{
Flow [pre [k] [k]-= V;
Flow [k] [pre [k] + = V;
K = pre [k];
}
}
Cout <ans <Endl;
}
// The maximum stream dinic writes more functions than EK to calculate the minimum number of edges from The Source Vertex To This vertex and adds a judgment condition.
# Include <stdio. h>
# Include <iostream>
Using namespace STD;
# Include <memory. h>
# Define maxn300
# Define maxflow 2000000000
Int N, S, T, M, flow [maxn + 1] [maxn + 1], map [maxn + 1] [maxn + 1], pre [maxn + 1], d [maxn + 1];
Void Init ()
{
Int I, A, B, C;
Memset (MAP, 0, sizeof (MAP ));
Memset (flow, 0, sizeof (flow ));
Memset (PRE, 0, sizeof (pre ));
For (I = 1; I <= m; I ++)
{
Cin> A> B> C;
Map [a] [0] ++;
Map [a] [map [a] [0] = B;
Map [B] [0] ++;
Map [B] [map [B] [0] =;
Flow [a] [B] + = C;
}
}
Void re_d ()
{
Int I, j, a [300], start, final, cur;
Memset (D, 0, sizeof (d ));
Start = 1; Final = 1;
D [s] = 1;
A [1] = s;
While (start <= final)
{
Cur = A [start ++];
For (I = 1; I <= map [cur] [0]; I ++)
{
J = map [cur] [I];
If (flow [cur] [J]> 0)
&&(! D [J])
{
D [J] = d [cur] + 1;
A [++ Final] = J;
}
}
}
}
Int BFS ()
{
Int I, TT [maxn + 1], start, finish, chk [maxn + 1], K;
Memset (TT, 0, sizeof (TT ));
Memset (chk, 0, sizeof (chk ));
Start = 1; finish = 1; TT [1] = s;
While (start <= finish)
{
For (I = 1; I <= map [TT [start] [0]; I ++)
If ((! Chk [map [TT [start] [I]) & (flow [TT [start] [map [TT [start] [I]) & (d [TT [start] + 1 = d [map [TT [start] [I])
// (D [TT [start] + 1 = d [map [TT [start] [I]) add this condition
{
K = map [TT [start] [I];
Finish ++;
TT [finish] = K;
Chk [k] = 1;
Pre [k] = TT [start];
If (k = T) return 1;
}
Start ++;
}
Return 0;
}
Int min (int A, int B)
{
If (A <B) return;
Else return B;
}
Int main ()
{
Int ans, K, V;
While (CIN> m> N)
{
S = 1; t = N;
// CIN> S> T; // s. t indicates the Source and Sink points.
Init ();
Ans = 0;
Re_d ();
While (BFS ())
{
K = T; V = maxflow;
While (K! = S)
{
V = min (v, flow [pre [k] [k]);
K = pre [k];
}
K = T; ans + = V;
While (K! = S)
{
Flow [pre [k] [k]-= V;
Flow [k] [pre [k] + = V;
K = pre [k];
}
Re_d ();
}
Cout <ans <Endl;
}
}
// Maximum flow with minimum cost (implemented by Dijkstra)
# Include <stdio. h>
# Include <iostream>
# Include <memory. h>
Using namespace STD;
# Define maxn300
# Define maxflow 2000000
# Define maxv 200000000
Int N, S, T, M, K, flow [maxn + 1] [maxn + 1], map [maxn + 1] [2 * maxn + 1], pre [maxn + 1], d [maxn + 1], numeric [maxn + 1] [maxn + 1], D0 [maxn + 1];
// Flow traffic, watermark value, map saves edge in the form of a record son, the prefix of pre [I] I
Bool Init ()
{
Int I, A, B, J, random, U, V, L, C;
Memset (MAP, 0, sizeof (MAP ));
Memset (flow, 0, sizeof (flow ));
Memset (PRE, 0, sizeof (pre ));
For (I = 0; I <= maxn; I ++)
D [I] = maxv;
For (I = 0; I <= maxn; I ++)
For (j = 0; j <= maxn; j ++)
{
Pipeline [I] [J] = maxv;
}
Cin> N> m> S> T;
If (n = 0) & (M = 0) & (k = 0) return false;
For (I = 1; I <= m; I ++)
{
Cin> A> B> C> quit;
Map [a] [0] ++;
Map [a] [map [a] [0] = B;
Map [B] [0] ++;
Map [B] [map [B] [0] =;
Flow [a] [B] = C;
Pipeline [a] [B] = pipeline;
Pipeline [B] [a] =-pipeline;
}
D [s] = 0;
Return true;
}
Int Dijkstra ()
{
Int I, TT [maxn + 1], chk [maxn + 1], K, min_d, J, min_ I, FT;
Memset (TT, 0, sizeof (TT ));
Memset (chk, 0, sizeof (chk ));
For (I = 0; I <= maxn; I ++)
D [I] = maxv;
D [s] = 0;
FT = 0;
Min_ I = maxv;
For (j = 1; j <= N; j ++)
{
Min_d = maxv;
For (I = 1; I <= N; I ++)
If ((! Chk [I]) & (d [I] <min_d ))
{
Min_ I = I;
Min_d = d [I];
}
If (min_d = maxv) break;
Chk [min_ I] = 1;
For (I = 1; I <= map [min_ I] [0]; I ++)
If (flow [min_ I] [map [min_ I] [I]> 0)
{
K = map [min_ I] [I];
If (d [k]> (d [min_ I] + minute [min_ I] [k]-D0 [min_ I] + D0 [k])
{
D [k] = d [min_ I] + shard [min_ I] [k]-D0 [min_ I] + D0 [k];
Pre [k] = min_ I;
}
}
}
Return (d [T]! = Maxv );
}
Void re_d ()
{
Int I;
For (I = 0; I <= N; I ++) D0 [I] =-d [I];
}
Int min (int A, int B)
{
If (A <B) return;
Else return B;
}
Int main ()
{
Int ans, K, V, St;
While (Init ())
{
Ans = 0;
Memset (D0, 0, sizeof (D0 ));
While (Dijkstra ())
{
K = T; V = maxflow;
While (K! = S)
{
V = min (v, flow [pre [k] [k]);
K = pre [k];
}
K = T; ans + = V * (d [T]-D0 [T]);
While (K! = S)
{
Flow [pre [k] [k]-= V;
Flow [k] [pre [k] + = V;
K = pre [k];
}
Re_d ();
}
Cout <ans <Endl;
}
Return 0;
}