The problem of A+b
The classic a+b problem--the first question on the big questions. Read into $a,b$, output $a+b$.
#include <iostream>usingnamespace std; int Main () { int A, b; CIN>>a>>b; cout<<a+b<<Endl; return 0 ;}
01.cpp 02 Calculation (A+B) value of *c
Read into $a,b,c$, output $c (a+b) $.
#include <iostream>usingnamespace std; int Main () { int a,b,c; CIN>>a>>b>>C; cout<< (a+b) *c<<Endl; return 0 ;}
02.cpp 03 calculation (A+B)/C value
Read in $a,b,c$, output $\lfloor \dfrac{a+b}{c} \rfloor$. In fact, if operators are integers, the division sign "/" in C + + can be rounded up.
#include <iostream>usingnamespace std; int Main () { int a,b,c; CIN>>a>>b>>C; cout<< (a+b)/c<<Endl; return 0 ;}
03.cpp 04 with remainder Division
Elementary school arithmetic, set to read in is $a,b$, then the two number of the request is a/ b and a%b .
#include <iostream>usingnamespace std; int Main () { int A, b; CIN>>a>>b; cout<<a/b<<""<<a%b<<Endl; return 0 ;}
04.cpp 05 floating-point values for the calculation of fractions
with double The type stores and divides operations, noting that output is formatted as a format. Of course you can also use 1.0 *a/b Such statements get the result of the real number except.
#include <cstdio>usingnamespace std; int Main () { int A, b; scanf ("%d%d",&a,&b); printf ("%.9f\n",1.0*a/b); return 0 ;}
05.cpp 06 Swine Flu Epidemic mortality
awesome backgrounds ... In fact, it is the division of two numbers, resulting in a percentage output. The output statement can be written as printf ( %.3f%%\n , 100 *x); ,x is a calculated quotient.
#include <cstdio>using namespace Std; int Main () { int b; scanf ( %d%d ", &a,&b); b =b*100 %.3f%%\n ", 1.0 *b/a); return 0 ;}
06.cpp 07 Calculating the value of a polynomial
This problem can be directly calculated, but there is a better way, is the law of Horner:
\[f (x) =ax^3+bx^2+cx+d= ((ax+b) x+c) x+d\]
This can reduce the number of operations.
#include <cstdio>usingnamespace std; int Main () { double x,a,b,c,d; scanf ("%lf%lf%lf%lf%lf",&x,&a,&b,&c,&D); printf ("%.7f\n", ((* (* (x) +b) *x) +c) *x+D) ; return 0 ;}
07.cpp 08 Temperature Expression Conversion
give $f$, $c=\dfrac{5}{9} (F-32) $,.
#include <cstdio>using namespace Std; int Main () { double F,c; scanf ( %lf , &f); C =5 * (F-32 )/9 ; printf ( %.5f\n " ,c); return 0 ;}
08.cpp 09 calculations related to the circle
Give $r$, Beg $c=2\pi R $ and $s=\pi r^2$.
#include <cstdio> #define PI 3.14159 namespace Std; int Main () { double R; scanf ( %lf , &r); printf ( %.4f%.4f%.4f\n ", 2 *r,2 *pi*r,pi*r*R); return 0 ;}
09.cpp 10 calculating the resistance of the shunt resistor
Give a $r_1,r_2$, beg
\[r=\frac{1}{\frac{1}{r_1}+\frac{1}{r_2}}\]
#include <cstdio>using namespace Std; int Main () { float R,R1,R2; scanf ( %f%f ", &r1,&R2); R =1.0 /(1 /r1+1 /R2); printf ( %.2f\n " ,r); return 0 ;}
10.cpp
[Noi the arithmetic expression and sequential execution of]1.3 Programming foundation of the Test Bank (I.)