Single GPU startup task times Oom Error:
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[96,3,299,299] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[Node: InceptionV3/InceptionV3/Conv2d_1a_3x3/Conv2D-0-TransposeNHWCToNCHW-LayoutOptimizer = Transpose[T=DT_FLOAT, Tperm=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](fifo_queue_Dequeue/_1557, PermConstNHWCToNCHW-LayoutOptimizer)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[Node: train_op/_1567 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_6943_train_op", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Error GPU memory is low, using 2 GPUs, using 2 GPUs, it is found that one GPU is idle, but the memory is full. Add the following code:
from keras import backend as K
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
K.set_session(sess)
Reference: https://github.com/keras-team/keras/issues/6031
OOM when allocating tensor with shape[96,3,299,299] and type float on/job:localhost/replica:0/task:0/device:gpu:0