Papers to be tasted | Joint learning of entity recognition and relationship extraction based on neural network

Source: Internet
Author: User

This article is reproduced from the public number:paperweekly.



Author 丨 Loling

School 丨 PhD student, Dalian University of Technology

Research direction 丨 Deep Learning, text classification, entity recognition

The term Joint learning (Joint learning) is not a recent term, and in the field of natural language processing, researchers have long used a joint model based on traditional machine learning (Joint model) to learn some of the closely related natural language processing tasks. For example, entity recognition and entity standardization Joint learning, Word segmentation and POS tagging joint learning and so on.

Recently, the researchers studied the entity recognition and relationship extraction based on the neural network approach , and I read about some of the relevant work, and I'm here to share my study with you (this article quoted some paper authors Suncong Zheng PPT report).


Introduction


The task of this article is to extract entities from unstructured text and relationships between entities (Entity 1-Relationship-entity 2, triples), where the relationship is a predefined relationship type, such as the following image:


There are two main kinds of methods, one is extracting using pipelining (pipelined method) : Entering a sentence, first naming entity recognition, then 22 combination of the identified entities, then the relationship classification, Finally, the ternary group with entity relationship is used as input.

The disadvantages of pipelining methods are:

1. Error propagation, the error of the Entity Identification module will affect the following relationship classification performance;

2. Ignoring the relationship between the two subtasks, such as the example in the figure, if there is a country-president relationship, then we can know that the former entity must belong to the location type, the latter entity belongs to the person type, the Pipelining method cannot make use of such information;

3. Unnecessary redundancy information is generated, because the identified entities are paired with 22, and then the relationship is classified, the non-related entities will bring unnecessary information, increase the error rate.

the ideal joint learning should be as follows: input a sentence, through entity recognition and relationship extraction joint model, directly get the related entity ternary group. This can overcome the drawbacks of the above pipelining approach, but there may be more complex structures.


Joint Learning


Here my main concern is based on the neural network method of joint learning , I put the current work is divided into two major categories: 1. Parameter sharing (Parameter sharing) and 2. Labeling policy (Tagging scheme). Mainly involved in some of the following related work.



parameter Sharing


the paper "Joint Entity and Relation Extraction Based on A Hybrid Neural Network", Zheng and others use the shared neural network underlying expression for joint learning.

Specifically, input sentences are encoded by using the shared Word embedding layer and then the bidirectional LSTM layer. A LSTM is then used to name entity recognition (NER) and a CNN for relational classification (RC).

Compared with the current mainstream NER model BILSTM-CRF model, the previous prediction tag is embedding and then introduced into the decoding to replace the CRF layer to solve the label dependency problem in NER.

When you do a relationship classification, you need to first pair the entities based on the results of the NER predictions, and then use a CNN to classify the text between the entities. Therefore, the model is mainly through the bottom of the model parameter sharing, in the training of two tasks will be through the back propagation algorithm to update the shared parameters to achieve the dependency between the two sub-tasks.

the paper "End-to-end Relation Extraction using Lstms on sequences and Tree structures" is similar to the idea of joint learning through parameter sharing. It's just that they differ in the decoding model of NER and RC.

This paper Miwa and other people are also through the parameter sharing, NER uses an NN to decode, the RC is added to the dependency information, based on the minimum path of the dependent tree using a bilstm for the relationship classification.


According to the experiments of these two papers, using parameter sharing to carry out joint learning is better than the Pipelining method. The F value increases by about 1% on their mission, which is a simple and common method. the paper "A Neural Joint Model for entity and Relation Extraction from biomedical text" uses the same idea in the biomedical text of the Entity Relationship Extraction task.


Labeling Policies


But we can see that the method of parameter sharing actually has two sub-tasks, but there is an interaction between the two subtasks through parameter sharing. And in the training time still need to carry on the NER, then according to the prediction information of NER 22 match to carry on the relation classification. There will still be non-related entities to this redundant information.

For such motives, Zheng and others in the paper "Joint Extraction of entities and relations Based on a novel Tagging Scheme" proposed a new labeling strategy to carry out the relationship pumping The paper was published on the ACL and was selected for outstanding Paper.

By proposing a new labeling strategy, they have completely changed the relationship extraction that involves sequence labeling tasks and classification tasks into a sequence labeling problem. Then the relationship Entity ternary group is obtained directly through an end-to-end neural network model.

The new labeling strategy they put forward is mainly composed of the following three parts: 1) Entity morphemes Position Information {B (entity start), I (Entity inside), E (end of entity), S (single entity)};2) relationship type information {based on predefined relationship type};3) entity role Information { 1 (Entity 1), 2 (Entity 2)}. Note that the words in this ternary group are "O" as long as they are not entity relationships.

Based on the label sequence, entities of the same relationship type are combined into a ternary group as the final result, and if a sentence contains more than one relationship of the same type, then the nearest principle is used for pairing. Currently, this set of labels does not support the case of entity relationship overlap.

The task then becomes a sequence labeling problem, as the overall model is shown below. First, a bilstm is used to encode and then decoded using the LSTM mentioned in the parameter sharing.

Unlike classic models, they use a target function with a bias. When the label is "O", is the normal objective function, when the label is not "O", that is involved in the relationship entity label, the effect of the label by α. The experimental results show that the objective function with bias can predict the relationship between the entities more accurately.


Summary


The joint learning of entity recognition and relationship extraction based on neural network is mainly composed of two kinds of methods. The method of parameter sharing is simple and easy to implement, and it is widely used in multi-task learning.

Zheng and other people put forward a new labeling strategy, although there are still some problems (such as the inability to identify overlapping entity relationships), but gave a new way of thinking, really did two sub-tasks merged into a sequence labeling problem, In this set of labeling strategy can also make more improvements and development to further improve the end-to-end relationship extraction task.


Reference Documents


[1] S. Zheng, Y. Hao, D. Lu, H. Bao, J. Xu, H. Hao, et al, Joint Entity and Relation Extraction Based on A Hybrid Neural Network, neurocomputing. (2017) 1–8.

[2] M. Miwa, M. Bansal, End-to-end Relation Extraction using Lstms on sequences and Tree structures, ACL, (2016).

[3] F. Li, M. Zhang, G. Fu, D. Ji, A neural Joint Model for Entity and Relation Extraction from biomedical Text, BMC Bioin Formatics. 18 (2017).

[4] S. Zheng, F. Wang, H. Bao, Y Hao, p. Zhou, B. Xu, Joint Extraction of entities and relations Based on a novel Tagging Scheme, Acl. (2017).


RELATED LINKS


[1] Thesis author Suncong Zheng report: HTTP://T.CN/RXMUNZM

About Paperweekly


Paperweekly is an academic platform that recommends, interprets, discusses and reports on the achievements of the frontier of AI.



openkg.cn


The Chinese Open Knowledge Atlas (openkg.cn) aims to promote the openness and interconnection of Chinese Knowledge Atlas data, and promote the popularization and wide application of Knowledge atlas and semantic technology.

Click to read the original and go to openkg blog.

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.