Description
While processing his own farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is before you entered the wormhole! Each of FJ's farms comprisesN(1 ≤N≤ 500) fields conveniently numbered 1 ..N,M(1 ≤M≤ 2500) paths, andW(1 ≤W≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: Start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. perhaps he will be able to meet himself :).
To help FJ find out whether this is possible or not, he will supply you with complete mapsF(1 ≤F≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1: A single integer,
F.
FFarm descriptions follow.
Line 1 of each farm: three space-separated integers respectively:
N,
M, And
W
Lines 2 ..
M+ 1 of each farm: three space-separated numbers (
S,
E,
T) That describe, respectively: a bidirectional path
SAnd
EThat requires
TSeconds to traverse. Two fields might be connected by more than one path.
Lines
M+ 2 ..
M+
W+ 1 of each farm: three space-separated numbers (
S,
E,
T) That describe, respectively: a one way path from
STo
EThat also moves the traveler back
TSeconds.
Output
Lines 1 ..
F: For each farm, output "yes" if FJ can achieve his goal, otherwise output "no" (do not include the quotes ).
Sample Input
23 3 11 2 21 3 42 3 13 1 33 2 11 2 32 3 43 1 8
Sample output
NOYES
Hint
For Farm 1, FJ cannot travel back in time.
For Farm 2, FJ cocould travel back in time by the cycle 1-> 2-> 3-> 1, arriving back at his starting location 1 second before he leaves. he cocould start from anywhere on the cycle to accomplish this.
Practice spfa.
Question: N places, M roads, and W wormhole holes. Determine whether the path can be time-backed.
Spfa: determines whether the number of teams has exceeded n. Bellman_ford directly determines.
#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>#include<limits.h>#include<queue>using namespace std;const int INF=0x3f3f3f3f;const int maxn=3000*2;int end[maxn],cost[maxn];int next[maxn],cnt[maxn],head[maxn];int t,n,m,w,e;bool flag;int d[maxn],visit[maxn];void add(int u,int v,int w){ end[e]=v; cost[e]=w; next[e]=head[u]; head[u]=e++;}void SPFA(){ queue<int>q; memset(visit,0,sizeof(visit)); memset(cnt,0,sizeof(cnt)); memset(d,INF,sizeof(d)); visit[1]=1; cnt[1]++; d[1]=0; q.push(1); while(!q.empty()) { int uu=q.front(); q.pop(); visit[uu]=0; for(int i=head[uu];i!=-1;i=next[i]) { int vv=end[i]; int ww=cost[i]; if(d[vv]>d[uu]+ww) { d[vv]=d[uu]+ww; if(!visit[vv]) { visit[vv]=1; q.push(vv); if(++cnt[vv]>=n) { flag=false; return ; } } } } } return ;}int main(){ int x,y,z; scanf("%d",&t); while(t--) { scanf("%d%d%d",&n,&m,&w); e=0; memset(head,-1,sizeof(head)); for(int i=0;i<m;i++) { scanf("%d%d%d",&x,&y,&z); add(x,y,z); add(y,x,z); } for(int i=0;i<w;i++) { scanf("%d%d%d",&x,&y,&z); add(x,y,-z); } flag=true; SPFA(); if(!flag) printf("YES\n"); else printf("NO\n"); } return 0;}
Bellman_ford:
#include<iostream>#include<algorithm>#include<cstdio>#include<cstring>using namespace std;#define MAXN 3000*2#define INF 0xFFFFFFFint t , n , m, w;int dis[MAXN];struct Edge{ int x; int y; int value;}e[MAXN];bool judge(){ for(int i = 0 ; i < m*2+w ; i++){ if(dis[e[i].y] > dis[e[i].x] + e[i].value) return false; } return true;}void Bellman_Ford(){ dis[1] = 0; for(int i = 2 ; i <= n ; i++) dis[i] = INF; for(int i = 1 ; i <= n ; i++){ for(int j = 0 ; j < m*2+w; j++){ if(dis[e[j].y] > dis[e[j].x] + e[j].value) dis[e[j].y] = dis[e[j].x] + e[j].value; } } if(judge()) printf("NO\n"); else printf("YES\n");}int main(){ int uu,vv,ww,i; scanf("%d",&t); while(t--) { scanf("%d%d%d",&n,&m,&w); for(i=0;i<m*2;) { scanf("%d%d%d",&uu,&vv,&ww); e[i].x=uu; e[i].y=vv; e[i++].value=ww; e[i].x=vv; e[i].y=uu; e[i++].value=ww; } for(;i<m*2+w;i++) { scanf("%d%d%d",&uu,&vv,&ww); e[i].x=uu; e[i].y=vv; e[i].value=-ww; } Bellman_Ford(); } return 0;}