Proof of the definition of vector cross product

Source: Internet
Author: User

A proof of the definition of the vector dot product was written in front of it, because the proof is relatively simple, so it does not cause deep thinking. Later, when I was going to write a proof of cross-product, I found something really difficult to understand.

Set two vectors $\mathbf{a} = (x_1, y_1, z_1), \mathbf{b} = (X_2, y_2, Z_2) $, the two vectors have an angle of $\theta$, and many textbooks include Wikipedia (crossProduct) The definitions given are:

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} = \mathbf{n} |\mathbf{a}| |\mathbf{b}| \sin{\theta}$$

Where $\mathbf{n}$ is a unit vector perpendicular to the vector $\mathbf{a},\mathbf{b}$, the direction is determined by the right hand rule. There seems to be nothing wrong with this definition, but I'm thinking about the question: How did he find out that the result of the cross product was perpendicular to the two vectors, given the definition of the mathematician? Why is the modulus of a vector exactly equal to $|\mathbf{a}| |\mathbf{b}| \sin{\theta}$? Here's my understanding of these issues.

I think mathematicians are just beginning to define the vector's fork multiplication ($\times$), the only basic definition given is: $\mathbf{a} \times \mathbf{b}$ result $\mathbf{c}$ is perpendicular to the vector $\mathbf{a},\mathbf{ A vector of b}$, whose direction is determined by the right-hand rule, and if the vector $\mathbf{a},\mathbf{b}$ parallel, the cross product results in a zero vector. With this definition, the coordinate expression of the cross product operation can be obtained according to the ratio of multiplication to addition:

 \begin{align} \mathbf{a} \times \mathbf{b} = & (X_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}) \ Times (X_2\mathbf{i} + y_2\mathbf{j} + z_2\mathbf{k}) \ = &\ x_1\mathbf{i} \times  (X_2\mathbf{i} + Y_2\mat HBF{J} + z_2\mathbf{k}) + y_1\mathbf{j} \times  (X_2\mathbf{i} + y_2\mathbf{j} + z_2\mathbf{k}) + Z_1\mathbf{k} \times   (X_2\mathbf{i} + y_2\mathbf{j} + z_2\mathbf{k}) \ = &\ x_1 x_2 (\mathbf{i} \times \mathbf{i}) + x_1 y _2 (\mathbf{i} \times \mathbf{j}) + x_1 z_2 (\mathbf{i} \times \mathbf{k}) + \ &\ y_1 x_2 (\mathbf{j} \times \mathbf{i}) + Y_1 y_2 (\mathbf{j} \times \mathbf{j}) + Y_1 z_2 (\mathbf{j} \times \mathbf{k}) + \ \ & Amp;\ z_1 x_2 (\mathbf{k} \times \mathbf{i}) + Z_1 y_2 (\mathbf{k} \times \mathbf{j}) + Z_1 z_2 (\mathbf{k} \tim Es \mathbf{k}) \end{align}

Where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ represent the unit vectors of the x, y, and z axes respectively. So according to the definition of the vector cross product: $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$,$\ma Thbf{i} \times \mathbf{j} = \mathbf{k}$,$\mathbf{j} \times \mathbf{k} = \mathbf{i}$,$\mathbf{k} \times \mathbf{i} = \MATHB F{J}$,$\MATHBF{J} \times \mathbf{i} =-\mathbf{k}$,$\mathbf{k} \times \mathbf{j} =-\mathbf{i}$,$\mathbf{i} \times \ Mathbf{k} =-\mathbf{j}$, so you get:

\begin{align} \mathbf{a} \times \mathbf{b} &= (y_1 z_2-z_1 y_2) \mathbf{i} + (Z_1 x_2-x_1 z_2) \mathbf{j} + (X_1 y _2-y_1 x_2) \mathbf{k} \ &= (y_1 z_2-z_1 y_2, \ z_1 x_2-x_1 z_2, \ x_1 y_2-y_1 x_2) \end{align}

below to prove $|\mathbf{c}| = |\mathbf{a}| |\mathbf{b}| \sin{\theta}$:

\begin{align} |\mathbf{c}|^2 = &\ (y_1 z_2-z_1 y_2) ^2 + (z_1 x_2-x_1 z_2) ^2 + (x_1 y_2-y_1 x_2) ^2 \ = &\ Y_ 1^2 z_2^2 + z_1^2 y_2^2-2y_1 y_2 z_1 z_2 + z_1^2 x_2^2 + x_1^2 z_2^2-2x_1 x_2 z_1 z_2 + \ &\ x_1^2 y_2^2 + y_1^2 X_2^2-2x_1 x_2 y_1 y_2 \end{align}

It is also based on the definition of the vector dot product:

\begin{align} (|\mathbf{a}| |\mathbf{b}| \sin{\theta}) ^2 &= (|\mathbf{a}| |\mathbf{b}|) ^2 \sin^{2}{\theta} \ &= (|\mathbf{a}| |\mathbf{b}|) ^2 (1-\cos^{2}{\theta}) \ &= (|\mathbf{a}| |\mathbf{b}|) ^2 \left (1-\frac{(\mathbf{a} \cdot \mathbf{b}) ^2}{(|\mathbf{a}| |\mathbf{b}|) ^2} \right) \ &= (|\mathbf{a}| |\mathbf{b}|) ^2-(\mathbf{a} \cdot \mathbf{b}) ^2 \end{align}

Because:

\begin{align} (|\mathbf{a}| |\mathbf{b}|)  ^2 = &\ \left (\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2} \right) ^2 \ \ = &\ (x_1^2 + y_1^2 + z_1^2) (x_2^2 + y_2^2 + z_2^2) \ \ = &\ x_1^2 x_2^2 + y_1^2 y_2^2 + z_1^2 z_2^2 + x_1^2 y_2^2 + x_1^2 z_2^2 + y_1^2 x_2^2 + y _1^2 z_2^2 + z_1^2 x_2^2 + z_1^2 y_2^2 \end{align}

And

\begin{align} (\mathbf{a} \cdot \mathbf{b}) ^2 = &\ (x_1 x_2 + y_1 y_2 + z_1 z_2) ^2 \ \ &\ x_1^2 x_2^2 + y_1^2 y_2 ^2 + z_1^2 z_2^2 + 2x_1 x_2 y_1 y_2 + 2x_1 x_2 z_1 z_2 + 2y_1 y_2 z_1 z_2 \end{align}

Easy to see: $ (|\mathbf{a}| |\mathbf{b}|) ^2-(\mathbf{a} \cdot \mathbf{b}) ^2 = |\mathbf{c}|^2$, i.e.:

$$|\mathbf{c}| = |\mathbf{a}| |\mathbf{b}| \sin{\theta}$$

Proof of the definition of vector cross product

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.