?? The modules in Python that support convex optimization (convex planning) are cvxopt and are installed in the following ways:
- Unloading the NumPy in the original Pyhon
- Install cvxopt WHL file, link to: https://www.lfd.uci.edu/~gohlke/pythonlibs/
- Install numpy+mkl WHL file, link to: https://www.lfd.uci.edu/~gohlke/pythonlibs/
This installation is chosen because of the incompatibility of Python's WHL and Pip Direct install.
?? Cvxopt Official documentation URL: http://cvxopt.org/index.html, now the latest version is 1.1.9, co-developed by Martin Andersen, Joachim Dahl and Lieven Vandenberghe , it can solve the problem of linear programming and two sub-type programming, and its application scenarios such as hard Margin SVM in SVM.
?? Examples of cvxopt use are:
Linear programming problems
Example 1:
Python Program code:
ImportNumPy asNp fromCvxoptImportMatrix, Solversa=Matrix ([[-1.0,-1.0,0.0,1.0], [1.0,-1.0,-1.0,-2.0]]) b=Matrix ([1.0,-2.0,0.0,4.0]) C=Matrix ([2.0,1.0]) Sol=SOLVERS.LP (C,A,B)Print(sol[' x '])Print(Np.dot (sol[' x ']. T, C))Print(sol[' Primal objective '])
Output Result:
Pcost dcost Gap pres dres k/t 0:2.6471e+00-7.0588e-01 2e+01 8e-01 2e+00 1e+00 1:3.0726e+0 0 2.8437e+00 1e+00 1e-01 2e-01 3e-01 2:2.4891e+00 2.4808e+00 1e-01 1e-02 2e-02 5e-02 3:2.4999e+00 2.4998e+0 0 1e-03 1e-04 2e-04 5e-04 4:2.5000e+00 2.5000e+00 1e-05 1e-06 2e-06 5e-06 5:2.5000e+00 2.5000e+00 1e-07 1e -08 2e-08 5e-08optimal solution found. {' Primal objective ': 2.4999999895543072, ' s ': <4x1 matrix, tc= ' d ';, ' dual infeasibility ': 2.257878974569382e-08, ' Primal Slack ': 2.0388399547464153e-08, ' dual objective ': 2.4999999817312535, ' residual as dual infeasibility certificate ': None, ' dual slack ': 3.529915972607509e-09, ' x ': <2x1 matrix, tc= ' d ';, ' iterations ': 5, ' gap ': 1.3974945737723005e -07, ' residual as Primal infeasibility certificate ': None, ' z ': <4x1 matrix, tc= ' d ', ' Y ': <0x1 matrix, tc= ' d ' ;, ' status ': ' Optimal ', ' Primal infeasibility ': 1.1368786228004961e-08, ' relative gap ': 5.5899783359379607e-08}[5.00e-01][1.50e+00][[2.49999999]]
Example 2
Python program code
ImportNumPy asNp fromCvxoptImportMatrix, Solversa=Matrix ([[1.0,0.0,-1.0], [0.0,1.0,-1.0]]) b=Matrix ([2.0,2.0,-2.0]) C=Matrix ([1.0,2.0]) d=Matrix ([-1.0,-2.0]) Sol1=SOLVERS.LP (C,A,B)min =Np.dot (sol1[' x ']. T, c) sol2=SOLVERS.LP (D,A,B)Max = -Np.dot (sol2[' x ']. T, D)Print(' min=%s, max=%s'%(min[0][0],Max[0][0]))
Output Result:
pcost dcost gap pres dres k/t 0: 4.0000e+00 -0.0000e+00 4e+00 0e+00 0e+00 1e+00 1: 2.7942e+00 1.9800e+00 8e-01 9e-17 7e-16 2e-01 2: 2.0095e+00 1.9875e+00 2e-02 4e-16 2e-16 7e-03 3: 2.0001e+00 1.9999e+00 2e-04 2e-16 6e-16 7e-05 4: 2.0000e+00 2.0000e+00 2e-06 6e-17 5e-16 7e-07 5: 2.0000e+00 2.0000e+00 2e-08 3e-16 7e-16 7e-09Optimal solution found. pcost dcost gap pres dres k/t 0: -4.0000e+00 -8.0000e+00 4e+00 0e+00 1e-16 1e+00 1: -5.2058e+00 -6.0200e+00 8e-01 1e-16 7e-16 2e-01 2: -5.9905e+00 -6.0125e+00 2e-02 1e-16 0e+00 7e-03 3: -5.9999e+00 -6.0001e+00 2e-04 1e-16 2e-16 7e-05 4: -6.0000e+00 -6.0000e+00 2e-06 1e-16 2e-16 7e-07Optimal solution found.min=2.00000000952,max=5.99999904803
Two sub-type planning problems
Where p,q,g,h,a,b is the input matrix, the problem is solved by using QP algorithm.
Example 1:
Python Program code:
fromCvxoptImportMatrix, SOLVERSQ= 2*Matrix ([[2, .5], [.5,1]]) p=Matrix ([1.0,1.0]) G=Matrix ([[-1.0,0.0],[0.0,-1.0]]) H=Matrix ([0.0,0.0]) A=Matrix ([1.0,1.0], (1,2)) b=Matrix1.0) Sol=SOLVERS.QP (Q, p, G, H, A, B)Print(sol[' x '])Print(sol[' Primal objective '])
Output Result:
pcost dcost gap pres dres 0: 1.8889e+00 7.7778e-01 1e+00 2e-16 2e+00 1: 1.8769e+00 1.8320e+00 4e-02 0e+00 6e-02 2: 1.8750e+00 1.8739e+00 1e-03 1e-16 5e-04 3: 1.8750e+00 1.8750e+00 1e-05 6e-17 5e-06 4: 1.8750e+00 1.8750e+00 1e-07 2e-16 5e-08Optimal solution found.[ 2.50e-01][ 7.50e-01]
Example 2:
Python Program code:
fromCvxoptImportMatrix, SOLVERSP=Matrix ([[1.0,0.0], [0.0,0.0]]) Q=Matrix ([3.0,4.0]) G=Matrix ([[-1.0,0.0,-1.0,2.0,3.0], [0.0,-1.0,-3.0,5.0,4.0]]) H=Matrix ([0.0,0.0,-15.0,100.0,80.0]) Sol=SOLVERS.QP (P, Q, G, h)Print(sol[' x '])Print(sol[' Primal objective '])
Output results
pcost dcost gap pres dres 0: 1.0780e+02 -7.6366e+02 9e+02 0e+00 4e+01 1: 9.3245e+01 9.7637e+00 8e+01 6e-17 3e+00 2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00 3: 2.6071e+01 1.5068e+01 1e+01 2e-17 7e-01 4: 3.7092e+01 2.3152e+01 1e+01 5e-18 4e-01 5: 2.5352e+01 1.8652e+01 7e+00 7e-17 3e-16 6: 2.0062e+01 1.9974e+01 9e-02 2e-16 3e-16 7: 2.0001e+01 2.0000e+01 9e-04 8e-17 5e-16 8: 2.0000e+01 2.0000e+01 9e-06 1e-16 2e-16Optimal solution found.[ 7.13e-07][ 5.00e+00]20.00000617311241
Python's cvxopt module