R Language Learning Note (15): Categories

Source: Internet
Author: User
Tags svm dnn

#数据准备loc <-"https://archive.ics.uci.edu/ml/machine-learning-databases/" ds<-"breast-cancer-wisconsin/ Breast-cancer-wisconsin.data "Url<-paste (loc,ds,sep=") breast<-read.table (url,sep= ",", Header=FALSE, na.strings= "?") Names (breast) <-c ("ID", "clumpthickness", "sizeuniformity", "shapeuniformity", "Maginaladhesion", " Singleepithelialcellsize "," Barenuclei "," Blandchromatin "," Normalnucleoli "," Mitosis "," class ") DF<-BREAST[-1]DF $class <-factor (Df$class,levels=c (2,4), labels=c ("Benign", "malignant")) Set.seed (1234) train<-sample (Nrow (DF ), 0.7*nrow (DF)) Df.train<-df[train,] #取行的意思df. validate<-df[-train,]table (Df.train$class)

Benign malignant
329 160

Table (Df.validate$class)

Benign malignant
129 81

#逻辑回归fit. LOGIT<-GLM (Class~.,data=df.train,family=binomial ()) Summary (fit.logit)

Call:
GLM (Formula = Class ~., family = binomial (), data = Df.train)

Deviance residuals:
Min 1Q Median 3Q Max
-2.75813-0.10602-0.05679 0.01237 2.64317

Coefficients:
Estimate Std. Error z value Pr (>|z|)
(Intercept) -10.42758 1.47602-7.065 1.61e-12 * * *
Clumpthickness 0.52434 0.15950 3.287 0.00101 * *
sizeUniformity-0.04805 0.25706-0.187 0.85171
Shapeuniformity 0.42309 0.26775 1.580 0.11407
Maginaladhesion 0.29245 0.14690 1.991 0.04650 *
Singleepithelialcellsize 0.11053 0.17980 0.615 0.53871
Barenuclei 0.33570 0.10715 3.133 0.00173 * *
Blandchromatin 0.42353 0.20673 2.049 0.04049 *
Normalnucleoli 0.28888 0.13995 2.064 0.03900 *
Mitosis 0.69057 0.39829 1.734 0.08295.
---
Signif. codes:0 ' * * * ' 0.001 ' * * ' 0.01 ' * ' 0.05 '. ' 0.1 "1

(Dispersion parameter for binomial family taken to be 1)

Null deviance:612.063 on 482 degrees of freedom
Residual deviance:71.346 on 473 degrees of freedom
(6 observations deleted due to missingness)
aic:91.346

Number of Fisher scoring Iterations:8

prob<-predict (fit.logit,df.validate,type= "response")Logit.pred<-factor (Prob>.5,levels=c ( False,true), Labels=c ("Begin", "malignant")) Logit.perf<-table (Df.validate$class,logit.pred,dnn=c ("Actual", " Predicted ")) Logit.perf

Predicted
Actual begin Malignant
Benign 118 2
Malignant 4 76

#决策树library (Rpart) set.seed (1234) Dtree<-rpart (class~.,data=df.train,method= "Class", Parms=list (split= " Information ")) dtree$cptable

CP (complexity) nsplit (branch size) Rel error (Error) Xerror (10 percent cross-validation error) XSTD (standard deviation of cross error)
1 0.800000 0 1.00000 1.00000 0.06484605
2 0.046875 1 0.20000 0.30625 0.04150018
3 0.012500 3 0.10625 0.20625 0.03467089
4 0.010000 4 0.09375 0.18125 0.03264401

Dtree.pruned<-prune (dtree,cp=.0125)  #剪枝操作library (rpart.plot) PRP (dtree.pruned,type=2,extra=104, Fallen.leaves = true,main= "Decision Tree")
Dtree.pred<-predict (dtree.pruned,df.validate,type= "class") Dtree.perf<-table (df.validate$class,dtree.pred , Dnn=c ("Actual", "predicted")) Dtree.perf

Predicted
Actual Benign malignant
Benign 122 7
Malignant 2 79

#条件推断树install. Packages ("Party") The Library (Party) Fit.ctree<-ctree (Class~.,data=df.train) plot (fit.ctree,main= " Conditional Inference Tree ")
Ctree.pred<-predict (fit.ctree,df.validate,type= "Response") ctree.perf<-table (df.validate$class,ctree.pred , Dnn=c ("Actual", "predicted")) Ctree.perf

Predicted
Actual Benign malignant
Benign 122 7
Malignant 3 78

#随机森林install. Packages ("Randomforest") library (randomforest) set.seed (1234) fit.forest<-randomforest (class~., Data=df.train,na.action=na.roughfix,importance=true) fit.forest

Call:
Randomforest (Formula = Class ~., data = Df.train, importance = TRUE, na.action = Na.roughfix)
Type of Random Forest:classification
Number of trees:500
No. of variables tried at each split:3

OOB estimate of error rate:3.68%
Confusion Matrix:
Benign malignant class.error
Benign 319 10 0.03039514
Malignant 8 152 0.05000000

Importance (fit.forest,type=2)  #输出变量的重要性

Forest.pred<-predict (fit.forest,df.validate) forest.perf<-table (Df.validate$class,forest.pred,dnn=c (" Actual "," predicted ")) Forest.perf

Predicted
Actual Benign malignant
Benign 117 3
Malignant 1 79

#支持向量机install. Packages ("e1071") library (e1071) set.seed (1234) FIT.SVM<-SVM (Class~.,data=df.train) FIT.SVM

Call:
SVM (Formula = Class ~., data = Df.train)


Parameters:
Svm-type:c-classification
Svm-kernel:radial
Cost:1
gamma:0.1111111

Number of support vectors:76

Svm.pred<-predict (Fit.svm,na.omit (df.validate)) svm.perf<-table (Na.omit (df.validate) $class, svm.pred,dnn=c ("Actual", "predicted")) Svm.perf

Predicted
Actual Benign malignant
Benign 116 4
Malignant 3 77

#带RBF核的SVM模型set. Seed (1234) TUNED<-TUNE.SVM (class~.,data=df.train,gamma=10^ ( -6:1), cost=10^ ( -10:10)) tuned

Parameter tuning of ' SVM ':

-Sampling Method:10-fold Cross Validation

-Best Parameters:
Gamma cost
0.01 1

-Best performance:0.02904092

FIT.SVM<-SVM (class~.,data=df.train,gamma=.01,cost=1) svm.pred<-predict (Fit.svm,na.omit (df.validate)) Svm.perf<-table (Na.omit (df.validate) $class, Svm.pred,dnn=c ("Actual", "predicted")) Svm.perf

Predicted
Actual Benign malignant
Benign 117 3
Malignant 3 77



#选择预测效果最好的解, evaluation Two classification accuracy performance<-function (table,n=2) { if (!all (table) ==c (2,2))) stop ("must be a 2x2 Table ") tn=table[1,1] fp=table[1,2] fn=table[2,1] tp=table[2,2] sensitivity=tp/(TP+FN) specificity=tn/(TN+FP) ppp=tp/(TP+FP) npp=tn/(TN+FN) hitrate= (TP+TN)/(TP+TN+FP+FN) Result<-paste ("sensitivity=", Round (Sensitivity,n), "\nspecificity =", round (Specificity,n), "\npositive Predictive value= ", round (Ppp,n)," \nnegative predictive value= ", round (Npp,n)," \naccuracy= ", Round (hitrate,n)," \ n ", Sep= "") Cat (Result)}performance (Logit.perf)

sensitivity=0.95
specificity = 0.98
Positive Predictive value=0.97
Negative predictive value=0.97
accuracy=0.97

Performance (DTREE.PERF)

sensitivity=0.98
specificity = 0.95
Positive Predictive value=0.92
Negative predictive value=0.98
accuracy=0.96

Performance (CTREE.PERF)

sensitivity=0.96
specificity = 0.95
Positive Predictive value=0.92
Negative predictive value=0.98
accuracy=0.95

Performance (CTREE.PERF)

sensitivity=0.96
specificity = 0.95
Positive Predictive value=0.92
Negative predictive value=0.98
accuracy=0.95

Performance (FOREST.PERF)

sensitivity=0.99
specificity = 0.98
Positive Predictive value=0.96
Negative predictive value=0.99
accuracy=0.98

Performance (SVM.PERF)

sensitivity=0.96
specificity = 0.98
Positive Predictive value=0.96
Negative predictive value=0.98
accuracy=0.97

#Rattle包library (Rattle) loc<-"https://archive.ics.uci.edu/ml/machine-learning-databases/" ds<-" Pima-indians-diabetes/pima-indians-diabetes.data "Url<-paste (loc,ds,sep=" ") diabetes<-read.table (url,sep=") , ", header=false) names (diabetes) <-c (" Npregant "," plasma "," BP "," triceps "," insulin "," BMI "," pedigree "," Age "," Class ") Diabetes$class<-factor (Diabetes$class,levels=c (0,1), labels=c (" normal "," diabetic ")) Rattle ()

Cv<-matrix (c (145,50,8,27), nrow=2) performance (As.table (CV))

R Language Learning Note (15): Categories

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.