Reading notes 4 reading and saving of data

Source: Internet
Author: User

One, read from the file

Pandas support file types, CSV, general delimited text files, Excel files, JSON, HTML tables, HDF5 and STATA.

1.comma-separated value (CSV) files can be read using Read_csv,

>>> fromPandas import Read_csv>>> Csv_data =read_csv (' ftse_1984_2012.csv ')>>> Csv_data =csv_data.values>>> csv_data[:4]array ([[' -- Geneva- the’,5899.9,5923.8,5880.6,5892.2,801550000L,5892.2],[' -- Geneva- -’,5905.7,5920.6,5877.2,5899.9,832567200L,5899.9],[' -- Geneva- -’,5852.4,5920.1,5852.4,5905.7,643543000L,5905.7],[' -- Geneva-Ten’,5895.5,5895.5,5839.9,5852.4,948790200L,5852.4]], dtype=Object)

2.Excel Files

With the Read_excel function, you need two parameters, a file name, and a sheet name. The first row of data is omitted by default.

Read_excel
exceldate=read_excel (' score.xlsx ',' Sheet1 ');  
Exceldate=exceldate.  Values 
Type (exceldate)
Exceldate. Shape
Exceldate[0,:]

<type ' Numpy.ndarray ' > (4L, 7L)
OUT[6]:
Array ([Dtype=int64, +,--), +, +, +]

3.STATA Files

>>> from pandas import Read_stata
>>> stata_data = read_stata (' Ftse_1984_2012.dta ')
>>> Stata_data = stata_data.values
>>> Stata_data[:4,:2]
Array ([[0.00000000e+00, 4.09540000e+04],
[1.00000000e+00, 4.09530000e+04],
[2.00000000e+00, 4.09520000e+04],
[3.00000000e+00, 4.09490000e+04]])

4, do not use pandas to read the contents of the file

For Excel files using xlrd to read,XLRD, responsible for reading EXCEL,XLWT, is responsible for writing Excel modules.

Import XLRDWB= Xlrd.open_workbook ('score.xlsx'); Sheetnames=wb.sheet_names () sheet= Wb.sheet_by_name (sheetnames[0]) Exceldate=[] forIinchxrange (sheet.nrows): Exceldate.append (Sheet.row_values (i));p rint'%d rows,'%len (Exceldate),'%d columns'%len (exceldate[0])? adate=Np.empty (len (exceldate)) forIinchxrange (len (exceldate)): Adate[i]=exceldate[i][0];p rint adate.shapeprint adate??5Rows7Columns (5L,) [  A. the.Wuyi. $. $.]

Second, save the data

1, numpy proprietary format to save Data Npz,

Savez_compressed will compress when the data is saved.
X=np.arange (Ten) y=np.zeros (( -, -)) np.savez_compressed ('Date1', x, y) Date=np.load ('Date1.npz') Print date['Arr_0']?np.savez_compressed ('Date2', x=x,ontherdate=y) date2=np.load ('Date2.npz');p rint date2['x']? [0 1 2 3 4 5 6 7 8 9][0 1 2 3 4 5 6 7 8 9]

2, Save as CSV file, use Np.savatxt method.

Note: The Read_csv and Read_excel methods in pandas will omit the first line, the default is the title

 fromPandas import READ_CSVX=NP.RANDOM.RANDN (Ten,Ten); Np.savetxt ('Date1.csv', x,delimiter=',') Date=read_csv ('Date1.csv') Date=date.values?print x.shapeprint date.shapeprint xprint date[0](10L,10L)(9L,10L)[[ 1.77015084-1.80554159  1.28403537  0.2009891   0.26291606  0.08448012   1.66140115  0.17728159  0.88959083  0.56291309] [ 0.58518743  1.44373927  0.54993558  0.01054313  0.59017053-0.35133822-0.42014888-0.3079049   0.94373013  1.35954942] [-0.54426668  0.04622141-0.66634713  0.45793767-0.63685413  0.99976971-0.39326027-0.93163258-0.79656236  0.72966639] [-0.39963295-1.79753906  0.32433359  0.82947734  1.54987769  2.77115954   0.22080235-0.60776182  2.57004264  0.59011931] [-0.19130441-0.12465107  1.40619987-0.61049826-0.39827838-1.25752483-0.91058091  0.36020845-0.10908816  1.45316786] [ 0.47408008-0.28463786-1.92910625-0.50288128-0.06007105-0.12408027-0.84164768-0.42411635  0.69954835-0.41664136] [ 0.42336169  0.23625584  1.11511232-1.08894244-0.79186067-1.71206423-0.02372556-0.71933255-1.33979181-0.41698675] [-0.06578197  1.04509307  0.1279905   1.03185255  1.15403322-0.18110707-0.60340346-0.33581049  0.02637558-1.06997906] [-1.84514777  1.19496964-1.70550266  1.30863094-1.48711603  1.55044598   0.64066525  0.39086305  0.15076543  1.42276444] [-1.23244051-0.03354092  0.84729912  0.15254869-0.33402971-0.59486921-0.28056973-1.72189462-0.0156615-1.22688771]][ 0.58518743  1.44373927  0.54993558  0.01054313  0.59017053-0.35133822-0.42014888-0.3079049   0.94373013  1.35954942]

Reading notes 4 reading and saving of data

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.