Report, 20150402, formulas on Entropy, part I

Source: Internet
Author: User

Section 1:papoulis ' s Formula

Lemma 1: If the random variables $y _1,\ldots,y_n$ is the linear combination of random variables $x _1,\ldots,x_n$, say ${\left[y_1 , \ldots,y_n \right]^t} = a{\left[X_1,\ldots,x_n \right]^t}$, then
\begin{equation} \nonumber
H\left ({{y_1}, \ldots, {y_n}} \right) = H\left ({{x_1}, \ldots, {x_n}} \right) + \log \left| \det A \right|
\end{equation}

Lemma 2:If a function $H \left (z \right) = \sum\nolimits_{n = 0}^\infty {{h_n}{z^{-n}} $ is minimum-phase and $h _0 \ne 0$, the N
\begin{equation} \nonumber
\ln h_0^2 = \frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln {{\left| {H\left ({{E^{j\omega}}} \right)} \right|} ^2}d\omega}
\end{equation}Remark:If $h _0 = 0,h_1 \ne 0$ and $H \left (z \right) $ is minimum-phase, then $zH \left (z \right) = \sum\nolimits_{n = 1}^\infty {{h_n}{z^{-n + 1}}} = {h_1} + {h_2}{z^{-1}} + \cdots $ is also minimum-phase. Thus, from lemma 2, we have
\begin{equation} \nonumber
\begin{aligned}
\ln h_1^2 &= \frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln {{\left| {{E^{j\omega}}h\left ({{E^{j\omega}}} \right)} \right|} ^2}d\omega} \ \
&= \frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln {\left| {H\left ({{E^{j\omega}}} \right)} \right|} ^2}d\omega}.
\end{aligned}
\end{equation} Similarly, if $H \left (z \right) $ is minimum-phase and $h _0 = \dots = h_{k-1} = 0,~h_k \ne 0$ for some posi  tive integer $k $ (i.e., $k $ is the relative degree of the system), then $\ln h_k^2 = \frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln {\left| {H\left ({{E^{j\omega}}} \right)} \right|} ^2}d\omega}$.

Lemma 3: Let the random vector $X \in \mathbb{r}^n$ has zero mean and covariance $K = exx^t$ (i.e., $K _{ij} = ex_ix_j,~1 \le i,j \ Le n$). Then $h (X) \le \frac{1}{2}\log {\left ({2\pi e} \right) ^n}\left| K \right|$, with equality iff $X \sim n\left ({0,k} \right) $.

theorem 1: If $H (z) $ is minimum-phase, then the entropy rate $\bar H (y) $ of the output $y _n$ is
\begin{equation} \nonumber
\bar h\left (y \right) = \bar H\left (r \right) + \frac{1}{{{\rm{2}}\pi}}\int_{-\pi}^\pi {\ln \left| {H\left ({{E^{j\omega}}} \right)} \right|d\omega}
\end{equation} where $\bar H\left (r \right) = \mathop {\lim}\limits_{n \to \infty} \frac{1}{n}h\left ({{r_0}, \cdots, { R_{n-1}}} \right) $ is the entropy rate of the input $r _n$.

Proof:Suppose that $H \left (z \right) = \sum\nolimits_{i = 0}^\infty {h_i}{z^{-i}} $ and $h _0 \ne 0$, then
\[\left[{\begin{array}{*{20}{c}}
{{y_0}}\\
{{y_1}}\\
\vdots \ \
{{y_{n-1}}}
\end{array}} \right] = \left[{\begin{array}{*{20}{c}}
{{h_0}}&0& \cdots &0\\
{{h_1}}&{{h_0}}& \cdots &0\\
\vdots & \vdots &{}& \vdots \ \
{{h_{n-1}}}&{{h_{n-2}}}& \cdots &{{h_0}}
\end{array}} \right]\left[{\begin{array}{*{20}{c}}
{{r_0}}\\
{{r_1}}\\
\vdots \ \
{{r_{n-1}}}
\end{array}} \right] \buildrel \delta \over = a_n\left[{\begin{array}{*{20}{c}}
{{r_0}}\\
{{r_1}}\\
\vdots \ \
{{r_{n-1}}}
\end{array}} \right]\] and $\det a_n = h_0^n$. From lemma 1 we have
\begin{equation} \nonumber
\begin{aligned}
H\left ({{y_0}, \ldots, {y_{n-1}}} \right) &= H\left ({{r_0}, \ldots, {r_{n-1}}} \right) + \log \left| \det A_n \right| \\
&= H\left ({{r_0}, \ldots, {r_{n-1}}} \right) + \log \left| {H_0^n} \right| \\
&= H\left ({{r_0}, \ldots, {r_{n-1}}} \right) + N\log \left| {{H_0}} \right|
\end{aligned}
\end{equation} and
\begin{equation} \label{hy_hr_logh0}
\bar h\left (y \right) = \bar H\left (r \right) + \log \left| {{H_0}} \right|
\end{equation} which, combines with lemma 2, complete the proof.

Remark:If $h _0 = 0$ but $h _1 \ne 0$, we are
\[\left[{\begin{array}{*{20}{c}}
{{y_1}}\\
{{y_2}}\\
\vdots \ \
{{Y_n}}
\end{array}} \right] = \left[{\begin{array}{*{20}{c}}
{{h_1}}&0& \cdots &0\\
{{h_2}}&{{h_1}}& \cdots &0\\
\vdots & \vdots &{}& \vdots \ \
{{h_n}}&{{h_{n-1}}}& \cdots &{{h_1}}
\end{array}} \right]\left[{\begin{array}{*{20}{c}}
{{r_0}}\\
{{r_1}}\\
\vdots \ \
{{r_{n-1}}}
\end{array}} \right] \buildrel \delta \over = {\bar a_n}\left[{\begin{array}{*{20}{c}}
{{r_0}}\\
{{r_1}}\\
\vdots \ \
{{r_{n-1}}}
\end{array}} \right]\] and
\begin{equation} \LABEL{HY_HR_H1}
\begin{aligned}
H\left ({{y_1}, \ldots, {y_n}} \right) &= H\left ({{r_0}, \ldots, {r_{n-1}}} \right) + \log \left| {\det {{\bar a}_n}} \right| \\
&= H\left ({{r_0}, \ldots, {r_{n-1}}} \right) + N\log \left| {{h_1}} \right|
\end{aligned}
\end{equation} However, since $ h\left ({{y_{\rm{0}}, \ldots, {y_n}} \right) = H\left ({{y_1}, \ldots, {y_n}} \right) {\RM { + }} H\left ({{y_0}\left| {{y_1}, \ldots, {y_n}} \right.} \right) $, we get
\begin{equation} \nonumber
\begin{aligned}
\frac{{h\left ({{y_1}, \ldots, {y_n}} \right)}}{n} &= \frac{{h\left ({{y_{\rm{0}}, \ldots, {y_n}} \right)-H\left ({ {y_0}\left| {{y_1}, \ldots, {y_n}} \right.} \right)}}{n} \ \
&= \frac{{h\left ({{y_{\rm{0}}, \ldots, {y_n}} \right)}}{{n + 1}} \cdot \frac{{n + 1}}{n}-\frac{{h\left ({{Y_0}\lef T| {{y_1}, \ldots, {y_n}} \right.} \right)}}{n}
\end{aligned}
\end{equation} which implies that \[\mathop {\lim}\limits_{n \to \infty} \frac{{h\left ({{y_1}, \ldots, {y_n}} \right)}} {n} = \bar h\left (y \right). \]therefore, divides (\ref{hy_hr_h1}) by $n $ and let $n $ tends to infinity, we can get
\begin{equation} \nonumber
\bar h\left (y \right) = \bar H\left (r \right) + \log \left| {{h_1}} \right|
\end{equation} which, combines with the remark of lemma 2, implies this theorem 1 holds for all minimum-phase systems not Only for that $h _0 \ne 0$.

Section 2:papoulis ' s Formula for NON-MP System

Suppose that a function $H \left (z \right) = \sum\nolimits_{n = 0}^\infty {{h_n}{z^{-n}}} $ are stable (Minimum-phase is unneeded), $k $ is the relative degree of this system such that $h _0 = \ldots = h_{k-1} = 0$ and $h _k \ne 0$. By Cauchy's residual theorem (in fact, inverse $Z – $transformation), we have
\[\frac{1}{{2\pi i}}\int_{\left| Z \right| = 1} {h\left (z \right) {Z^{k-1}}dz} = {H_k}\] or
\begin{equation} \nonumber
\frac{1}{{2\pi}}\int_{-\pi}^\pi {h\left ({{E^{j\omega}}} \right) {E^{jk\omega}}d\omega} = {H_k}.
\end{equation} then theorem 1 can be rewritten as \[\bar h\left (y \right) = \bar H\left (r \right) + \ln \left| {\frac{1}{{2\pi}}\int_{\left| Z \right| = 1} {h\left ({{E^{j\omega}}} \right) {E^{jk\omega}}d\omega}} \right|. \] On the other hand, each (Stable) transfer function can be written as $ $H \left (z \right) = {H_{{\rm{mp}}}}\left (z \rig HT) {h_{{\rm{ap}}}}\left (z \right) = {z_{{u_i}}} \cdots {Z_{{u_l}}}\bar h\left (z \right) {h_{{\rm{ap}}}}\left (z \right) $ $ where ${{z_{{u_i}}},\ldots,{z_{{u_l}}}}$ is the unstable zeros of $H (z) $ and $\bar H (z) $ is minimum-phase and have the F Irst Laurent series coefficient same as $H (z) $. That is, $\bar H (z) = {H_0} + {\bar h_1}{z^{-1}} + \cdots $ iff $H (z) = {H_0} + {h_1}{z^{-1}} + \cdots $. Therefore, we have
\begin{equation} \nonumber
\begin{aligned}
\frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln {{\left| {H\left ({{E^{j\omega}}} \right)} \right|} ^2}d\omega} \ \
&= \frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln {\left| {{z_{{u_i}}} \cdots {Z_{{u_l}}}\bar h\left ({{E^{j\omega}}} \right) {H_{{\rm{ap}}}}\left ({{E^{j\omega}}} \right)} \ Right|} ^2}d\omega} \ \
&= \frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln {\left| {{z_{{u_i}}} \cdots {Z_{{u_l}}}\bar h\left ({{E^{j\omega}}} \right)} \right|} ^2}d\omega} \ \
&= \sum\limits_{i = 1}^l {\ln {{\left| {{z_{{u_i}}} \right|} ^2}} + \frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln {{\left| {\bar H\left ({{E^{j\omega}}} \right)} \right|} ^2}d\omega} \ \
&= \sum\limits_{i = 1}^l {\ln {{\left| {{z_{{u_i}}} \right|} ^2}} + \ln h_0^2
\end{aligned}
\end{equation} or simply, \[\ln \left| {{H_0}} \right| = \frac{1}{{2\pi}}\int_{-\pi}^\pi {\ln \left| {H\left ({{E^{j\omega}}} \right)} \right|d\omega}-\sum\limits_{i = 1}^l {\ln \left| {{z_{{u_i}}} \right|} . \] Finally, by equation (\ref{hy_hr_logh0}), we get \[\bar h\left (y \right) = \bar H\left (r \right) + \frac{1}{{2\pi}} \int_{-\pi}^\pi {\ln \left| {H\left ({{E^{j\omega}}} \right)} \right|d\omega}-\sum\limits_{i = 1}^l {\ln \left| {{z_{{u_i}}} \right|} \] If the system is stable only where $z _{u_i}$ 's is the unstable zeros.

Section 3:extended Case for 1st-order System

Consider the following stable discrete-time linear system with state equation
\begin{equation} \nonumber
\begin{aligned}
{x_{k + 1}} &= A{x_k} + b{u_k}\\
{y_k} &= C{x_k}.
\end{aligned}
\end{equation} The initial state ${x_0}\sim N\left ({0,\sigma _0^2i} \right) $. By simple computation, we have ${x_{k + 1}} = {a^{k + 1}}{x_0} + \sum\nolimits_{i = 0}^k {{a^{k-i}}b{u_i}} $ and ${y_k} = C{a^{k + 1}}{x_0} + \sum\nolimits_{i = 0}^k {c{a^{k-i}}b{u_i}} $. Then
\begin{equation} \label{hy_inequal}
\begin{aligned}
&h\left ({{y_0}, \ldots, {y_{n-1}}\left| {{u_0}, \ldots, {u_{n-1}}} \right.} \right) \ \
&= h\left ({c{x_0}, \ldots, c{a^{n-1}}{x_0} + \sum\limits_{i = 0}^{n-2} {c{a^{n-2-i}}b{u_i}} \left| {{u_0}, \ldots, {u_{n-1}}} \right.} \right) \ \
&= h\left ({c{x_0}, \ldots, c{a^{n-1}}{x_0}\left| {{u_0}, \ldots, {u_{n-1}}} \right.} \right) \ \
& \le H\left ({c{x_0}, \ldots, c{a^{n-1}}{x_0}} \right) \ \
& \le \sum\limits_{i = 0}^{n-1} {h\left ({c{a^i}{x_0}} \right)}.
\end{aligned}
\end{equation} Since ${x_0}\sim n\left ({0,\sigma _0^2i} \right) $, the covariance matrix of $cA ^ix_0$ is
\begin{equation} \nonumber
\begin{aligned}
{k_i} &= \varepsilon \left\{{c{a^i}{x_0}{{\left ({c{a^i}{x_0}} \right)}^t}} \right\} \ \
&= C{a^i}\varepsilon \left\{{{x_0}{x_0}^t} \right\}{\left ({{a^i}} \right) ^t}{c^t} \ \
&= C{a^i}\sigma _0^2{\left ({{a^i}} \right) ^t}{c^t} \ \
&= \sigma _0^2{\left\| {c{a^i}} \right\|^2}.
\end{aligned}
\end{equation} Therefore, by lemma \ref{maximum_entropy}, we have
\begin{equation} \label{hcax0_inequal}
\begin{aligned}
H\left ({c{a^i}{x_0}} \right) &\le \frac{1}{2}\log \left ({2\pi e\sigma _0^2{{\left\| {c{a^i}} \right\|} ^2}} \right) \ \
&\le \frac{1}{2}\log \left ({2\pi e\sigma _0^2{{\left\| c \right\|} ^2}{{\left\| A \right\|} ^{2i}}} \right) \ \
&= \frac{1}{2}\log \left ({2\pi e\sigma _0^2{{\left\| c \right\|} ^2}} \right) + I\log \left\| A \right\|
\end{aligned}
\end{equation} where $\left\| C \right\|$ and $\left\| A \right\|$ refers, respectively, to the $l _2-$norm of the vector $c $ and The matrix $A $ (i.e., $\left\| c \right\| = \sum \nolimits_{i = 1}^n {{{\left| {{c_i}} \right|} ^2}},~ \left\| A \right\| = {\lambda _{\max}}\left (A \right) $), and the second inequality in (\ref{hcax0_inequal}) follows that $\left\| {Ac} \right\| \le \left\| A \right\|\left\| C \right\|$.
Now substitute (\ref{hcax0_inequal}) into (\ref{hy_inequal}), we can get
\begin{equation} \nonumber
\begin{aligned}
&h\left ({{y_0}, \ldots, {y_{n-1}}\left| {{u_0}, \ldots, {u_{n-1}}} \right.} \right) \ \
&\le \sum\limits_{i = 0}^{n-1} {h\left ({c{a^i}{x_0}} \right)} \ \ \
& \le \sum\limits_{i = 0}^{n-1} {\left {\frac{1}{2}\log \left ({2\pi e\sigma _0^2{{\left\| c \right\|} ^2}} \right) + I\log \left\| A \right\|} \right)} \ \
&= \frac{n}{2}\log \left ({2\pi e\sigma _0^2{{\left\| c \right\|} ^2}} \right) + \frac{{n\left ({n-1} \right)}}{2}\log \left\| A \right\|
\end{aligned}
\end{equation} and
\begin{equation} \label{iyu_ineuqal}
\begin{aligned}
&\frac{{i\left ({{y_0}, \ldots, {y_{n-1}};{ U_0}, \ldots, {u_{n-1}}} \right)}}{n} \ \
&= \frac{{h\left ({{y_0}, \ldots, {y_{n-1}}} \right)-H\left ({{y_0}, \ldots, {y_{n-1}}\left| {{u_0}, \ldots, {u_{n-1}}} \right.} \right)}}{n} \ \
&\ge \frac{{h\left ({{y_0}, \ldots, {y_{n-1}}} \right)}}{n}-\frac{1}{2}\log \left ({2\pi e\sigma _0^2{{\left\| c \ right\|} ^2}} \right) + \frac{{\left ({n-1} \right)}}{2}\log \frac{1}{{\left\| A \right\|}}
\end{aligned}
\end{equation} However, since the system we considered is stable, $\left\| A \right\| < 1$ or $\log \frac{1}{{\left\| A \right\|}} > 0$. Taking $n \to \infty $ in (\ref{iyu_ineuqal}) We'll get $\bar i\left ({y;u} \right) = \infty $, which is coincide with T He 1st-order case.

Report, 20150402, formulas on Entropy, part I

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.