Spark streaming, Kafka combine spark JDBC External datasouces processing case

Source: Internet
Author: User
Tags joins

Scenario: Use spark streaming to receive the data sent by Kafka and related query operations to the tables in the relational database;

The data format sent by Kafka is: ID, name, Cityid, and the delimiter is tab.

1       Zhangsan        12       Lisi    13       Wangwu  24       3

The table city structure of MySQL is: ID int, name varchar

1     BJ2    sz3    sh

The results of this case are: Select S.id, S.name, S.cityid, c.name from student S joins City C on S.cityid=c.id;

Kafka installation See also: Kafka stand-alone version environment construction

Start Kafka:

Zkserver. SH Startkafka-server-start. SH  $KAFKA _home/config/server.properties  &KAFKA-topics.  SH --create--zookeeper hadoop000:218111  --topic Luogankun_topickafka -console-producer. sh --broker-list hadoop000:9092 --topic luogankun_topic

Instance code:

 Package COM.ASIAINFO.OCDC  Case class Student (Id:int, name:string, Cityid:int)
 PackageCOM.ASIAINFO.OCDCImportorg.apache.spark.streaming._ImportOrg.apache.spark. {sparkcontext, sparkconf}ImportOrg.apache.spark.sql.hive.HiveContextImportOrg.apache.spark.storage.StorageLevelImportorg.apache.spark.streaming.kafka._/*** Spark streaming processes Kafka data and processes it in conjunction with the Spark JDBC External data source * *@authorLuogankun*/Object Kafkastreaming {def main (args:array[string]) {if(Args.length < 4) {System.err.println ("Usage:kafkastreaming <zkQuorum> <group> <topics> <numThreads>") System.exit (1)} Val Array (Zkquorum, group, topics, numthreads)=args Val sparkconf=Newsparkconf () Val SC=NewSparkcontext (sparkconf) Val SSC=NewStreamingContext (SC, Seconds (5)) Val SqlContext=NewHivecontext (SC)Importsqlcontext._Importcom.luogankun.spark.jdbc._//using external data sources to work with MySQLVal cities = sqlcontext.jdbctable ("Jdbc:mysql://hadoop000:3306/test", "root", "root", "SELECT ID, name from city")    //registering the cities Rdd as a city temp tableCities.registertemptable ("City") Val Topicpmap= Topics.split (","). Map ((_, Numthreads.toint)). Tomap Val Inputs=Kafkautils.createstream (SSC, Zkquorum, Group, Topicpmap, Storagelevel.memory_and_disk_ser). Map (_._2) Inputs.foreachrdd (Rdd= {      if(Rdd.partitions.length > 0) {        //register the data received in streaming as a student temporary tableRdd.map (_.split ("\ T")). Map (x = Student (x (0). ToInt, X (1), X (2). ToInt). Registertemptable ("Student")        //correlate streaming and MySQL tables for query operationsSqlcontext.sql ("Select S.id, S.name, S.cityid, c.name from student S joins City C on S.cityid=c.id"). Collect (). foreach (println)}) Ssc.start () Ssc.awaittermination ()}}

Commit to cluster execution script: sparkstreaming_kafka_jdbc.sh

#!/bin/sh/etc/-xcd $SPARK _home/binspark- ---- --master Spark://hadoop000:7077 \--executor-1/home/spark /software/source/streaming-app/target/streaming-app-v00b01c00-snapshot-jar-with-Dependencies.jar hadoop000 :21811

Spark streaming, Kafka combined with spark JDBC External datasouces processing case

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.