Special discussion on contract standard form

Source: Internet
Author: User

Contract Standard Form

$ \ BF proposition: $ set $ \ Alpha $, $ \ beta $ to a real $ N $ dimension non-zero column vector, evaluate the positive and negative inertial indexes of $ \ Alpha \ beta '{\ RM {+} \ beta \ Alpha' $

1

$ \ BF proposition: $ set $ A =\left ({A _ {IJ }}\ right ), B =\left ({B _ {IJ }}\ right) $ all are $ N $ level positive definite arrays, then $ \ BF {Hadamard Product }$ $ H =\left ({A _ {IJ }}{ B _ {IJ }}\ right) $ is also a positive definite array.

1

$ \ BF proposition: $ set $ A $ to $ N $ for the first-order real-symmetric semi-Definite Matrix, then $ A ^ * $ semi-definite

1

$ \ BF proposition: $ set $ N $ real quadratic form $ f \ left ({X_1}, {X_2}, \ cdots, {x_n }}\ right) the positive and negative inertial exponent of $ is $ p, q (P \ Ge q) $, and $ q $ dimension sub-space $ W $ makes $ f \ left (x \ right) = 0, \ forall x \ in W $

1

$ \ BF proposition: $

$ \ BF exercise: $ \ BF (10 beike dajiu) $ set $ f \ left ({X_1}, {X_2}, \ cdots, {x_n} \ right) $ is a quadratic form with a rank of $ N $, there is a $ \ frac {1} {2} \ left ({n-\ left | S \ right |} \ right) on $ {R ^ n} $) $ dimension subspaces $ {v_1} $,

Make the $ \ left ({X_1}, {X_2}, \ cdots, {x_n }}\ right) \ in {v_1} $, $ f \ left ({X_1}, {X_2}, \ cdots, {x_n }}\ right) = 0 $

1

$ \ BF exercise: $ \ BF () $

Orthogonal contract standard form

 

$ \ BF proposition: $ set $ A $ to $ N $ level definite matrix, $ \ Alpha, \ beta $ to $ N $ dimension column vector, then $ {\ left ({\ Alpha ^ t} \ beta} \ right) ^ 2} \ Le \ left ({{\ Alpha ^ t} A \ Alpha} \ right) \ left ({{\ beta ^ t} {A ^ {-1 }}\ beta} \ right) $

1

$ \ BF proposition: $ set the maximum feature value of the real symmetric matrix $ A $ to the maximum value of $ X 'ax $, where $ x $ takes the unit vector in $ {R ^ n} $.

1

$ \ BF proposition: $ set $ A $, $ B $ to a real symmetric semi-Definite Matrix, then $ tr \ left ({AB} \ right) \ le tr \ left (A \ right) \ cdot tr \ left (B \ right) $

1

$ \ BF proposition: $ set $ A, B $ to $ N $ level real symmetric arrays, and $ r \ left ({A + \ Lambda B} \ right) = 1 $ for any number $ \ Lambda $, then $ B = 0 $

1

$ \ BF proposition: $ set $ A, B $ as the $ N $ square matrix in the real number field, and $ AB + BA = 0 $. proof: if $ A $ is a semi-definite array, $ AB = BA = 0 $

1

$ \ BF proposition: $

$ \ BF exercise: $ \ BF (10 Zhejiang University 5) $ set $ A $ to $ N $ level real-symmetric arrays, then there will be idempotent arrays $ {B _ I} $, make $ A = \ sum \ limits _ {I = 1} ^ s {\ Lambda _ I} {B _ I }}$, where $ I = 1, 2, \ cdots, S $

$ \ BF exercise: $ \ BF (13) $ set $ A $ to $ N $ Level Semi-Definite Matrix, then $ \ left | {A + 2013e} \ right | \ Ge {2013 ^ n} $ is valid only when $ A = 0 $

$ \ BF exercise: $ \ BF (06 Emy of Sciences 7) $ set the real quadratic form $ f \ left (x \ right) = x' ax $, $ A $3 \ times 3 $ real symmetric array, and the formula \ [{A ^ 3}-6 {A ^ 2} + 11A-6e = 0 \] is met for trial calculation $ \ mathop {max} \ limits_a \ mathop {max} \ limits _ {\ left \ | x \ right \ | = 1} f \ left (x \ right) $, where $ {\ left \ | x \ right \ | ^ 2 }={ X_1} ^ 2 + {X_2} ^ 2 + {X_3} ^ 2 $

$ \ BF exercise: $ \ BF (12 China Southern Airlines 8) $ set $ A, B $ to $ N $ level real symmetric arrays, and $ A = {B ^ 3} $ proves the following proposition

(1) equations $ AX = 0 $ same solution with $ BX = 0 $

(2) For any real number $ C \ neq0 $, the matrix $ P = C ^ {2} e _ {n} + CB + B ^ {2} $ is a positive definite array.

(3) $ A $ feature vectors are all $ B $ feature vectors.

$ \ BF exercise: $ \ BF (10) $ set $ A $ to $ N $ level real symmetric reversible arrays, then, the necessary and sufficient conditions for $ A $ Positive Definite are any positive definite arrays $ B $, with $ tr (AB)> 0 $

At the same time, contract keralization

$ \ BF proposition: $ set $ A $ as a positive definite array, $ B $ as a real symmetric array, then $ A $, $ B $ can be subject to contract keralization at the same time

1

$ \ BF proposition: $ set $ A $, $ B $ to form a real symmetric semi-Definite Matrix. Then, $ A $, $ B $ can be subject to contract keratin at the same time.

1

$ \ BF Proposition 1: $ set $ A and B $ to positive definite arrays, then $ \ left | {a + B} \ right | \ Ge \ left | A \ right | + \ left | B \ right | $

1

$ \ BF Proposition 2: $ set $ A and B $ to definite and semi-definite arrays, respectively, then $ \ left | {a + B} \ right | \ Ge \ left | A \ right | $

1

$ \ BF Proposition 3: $ set $ A, B $ to be a semi-Definite Matrix, then $ \ left | {a + B} \ right | \ Ge \ left | A \ right | + \ left | B \ right | $

1

$ \ BF proposition: $ set $ A $ Real Symmetric positive definite, $ B $ Real Symmetric semi-definite, then $ tr \ left ({B {A ^ {-1 }}\ right) tr \ left (A \ right) \ Ge tr \ left (B \ right) $

1

$ \ BF exercise: $ \ BF (10 huake 7) $ set $ A $ as a positive definite matrix, $ B $ as a symmetric matrix, then a constant $ C $, makes $ Ca + B $ a definite Array

$ \ BF exercise: $ \ BF (08 huake III) $ set $ a, B \ in {R ^ {n \ times N }}$, and $ A, B, if a-B $ is positive, $ {B ^ {-1 }}- {A ^ {-1 }}$ is also positive.

1

$ \ BF exercise: $ \ BF (08 huake five) $ set $ A and B $ to $ N $ and semi-definite arrays, respectively, then $ \ left | A \ right | + \ left | B \ right | \ Le \ left | {a + B} \ right | $ when and only when $ B = 0 $ time equal sign is set up

$ \ BF exercise: $ \ BF (05 $ \ ln \ det \ left (\ cdot \ right) $ it is a concave function in the symmetric positive definite matrix set, that is, for any symmetric positive definite matrix $ A, B $ and $ \ Lambda \ In \ left [{0, 1} \ right] $, \ [\ ln \ det \ left ({\ Lambda A + \ left ({1-\ Lambda} \ right) B} \ right) \ Le \ Lambda \ ln \ det \ left (A \ right) + \ left ({1-\ Lambda} \ right) \ ln \ det \ left (B \ right) \]

 

 

 

 

 

Special discussion on contract standard form

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.