Statistical analysis of exploratory data of SPARK2 dataframestatfunctions

Source: Internet
Author: User

Data source, please refer to my blog http://www.cnblogs.com/wwxbi/p/6063613.html

Import Org.apache.Spark.sql.DataFrameStatFunctions

Import Org.apache.spark.sql.functions._

Correlation coefficient

Val df = Range (0,10,step=1). TODF ("id"). Withcolumn ("Rand1", Rand (SEED=10)). Withcolumn ("Rand2", Rand (SEED=27)) DF: Org.apache.spark.sql.DataFrame = [Id:int, rand1:double ... 1 more field]df.show+---+-------------------+-------------------+| id|              rand1|              rand2|+---+-------------------+-------------------+|  0|0.41371264720975787|  0.714105256846827| |  1| 0.7311719281896606| 0.8143487574232506| |  2| 0.9031701155118229| 0.5282207324381174| |  3|0.09430205113458567| 0.4420100497826609| |  4|0.38340505276222947| 0.9387162206758006| |  5| 0.5569246135523511| 0.6398126862647711| |  6| 0.4977441406613893| 0.9895498513115722| |  7| 0.2076666106201438| 0.3398720242725498| |  8| 0.9571919406508957|0.15042237695815963| |  9| 0.7429395461204413| 0.7302723457066639|+---+-------------------+-------------------+df.stat.corr ("Rand1", "Rand2", "Pearson") Res24: Double =-0.10993962467082698

View the statistical distribution of data

Val Colarray = Array ("Age", "yearsmarried", "religiousness", "Education", "occupation", "rating")//view the statistical distribution of the data Val DESCRDF = Data.describe ("Age", "yearsmarried", "religiousness", "Education", "occupation", "rating") DESCRDF: Org.apache.spark.sql.DataFrame = [Summary:string, age:string ...        5 more fields]descrdf.selectexpr ("Summary", "Round (age,2) as-age", "round (yearsmarried,2) as yearsmarried",  "Round (religiousness,2) as religiousness", "Round (education,2) as education", "round (occupation,2) as Occupation "," round (rating,2) as rating "). Show (truncate = false) +-------+-----+------------+-------------+---- -----+----------+------+|summary|age |yearsmarried|religiousness|education|occupation|rating|+-------+-----+--- ---------+-------------+---------+----------+------+|count |601.0|601.0 |601.0 |601.0 |601.0 |601.0 | |mean |32.49|8.18 |3.12 |16.17 |4.19 |3.93 | |       StdDev |9.29 |5.57 |1.17  |2.4 |1.82 |1.1 | | Min |17.5 |0.13 |1.0 |9.0 |1.0 |1.0 | | Max |57.0 |15.0 |5.0 |20.0 |7.0 |5.0 |+-------+-----+------------+-------------+---------+- ---------+------+

Number of elements in the statistics field

Number of elements in the statistics field val fi = Data.stat.freqItems (colarray) fi:org.apache.spark.sql.DataFrame = [age_freqitems:array< Double&gt, yearsmarried_freqitems:array<double> ...    4 more Fields]fi.printschema () root |--age_freqitems:array (nullable = True) |    |--element:double (Containsnull = False) |--Yearsmarried_freqitems:array (nullable = True) |    |--element:double (Containsnull = False) |--Religiousness_freqitems:array (nullable = True) |    |--element:double (Containsnull = False) |--Education_freqitems:array (nullable = True) |    |--element:double (Containsnull = False) |--Occupation_freqitems:array (nullable = True) |    |--element:double (Containsnull = False) |--Rating_freqitems:array (nullable = True) |   |--element:double (Containsnull = False) Val f = fi.selectexpr (|   "Size (Age_freqitems)", |   "Size (Yearsmarried_freqitems)", |   "Size (Religiousness_freqitems)", |   "Size (Education_freqitems)", |   "Size (Occupation_freqitems)",  | "Size (Rating_freqitems)") F:org.apache.spark.sql.dataframe = [Size (age_freqitems): int, size (yearsmarried_freqitems ): int ... 4 more fields]f.show (truncate = false) +-------------------+----------------------------+----------------------- ------+-------------------------+--------------------------+----------------------+|size (age_freqitems) |size ( Yearsmarried_freqitems) |size (religiousness_freqitems) |size (education_freqitems) |size (occupation_freqItems) | Size (rating_freqitems) |+-------------------+----------------------------+-----------------------------+-------                            ------------------+--------------------------+----------------------+|9 |8 |5 |7 |7 |5 |+------------------ -+----------------------------+-----------------------------+-------------------------+------------------------ --+----------------------+

Elements of a collection field

The elements of the collection field Val f1 = Data.stat.freqItems (Array ("Age", "yearsmarried", "religiousness")) F1: Org.apache.spark.sql.DataFrame = [Age_freqitems:array<double>, yearsmarried_freqitems:array<double> ... 1 more field]f1.show (truncate = false) +------------------------------------------------------+----------------- ------------------------------+-------------------------+|age_freqitems |yearsmarr Ied_freqitems |religiousness_freqitems |+------------------------------------------------------+- ----------------------------------------------+-------------------------+| [32.0, 47.0, 22.0, 52.0, 37.0, 17.5, 27.0, 57.0, 42.0]| [0.75, 0.125, 1.5, 0.417, 4.0, 7.0, 10.0, 15.0]| [2.0, 5.0, 4.0, 1.0, 3.0]|+------------------------------------------------------+-------------------------------- ---------------+-------------------------+//An array of elements sorted f1.selectexpr ("Sort_array (Age_freqitems)", "Sort_array ( Yearsmarried_freqitems) "," Sort_arrAy (Religiousness_freqitems)). Show (truncate = false) +------------------------------------------------------+- ----------------------------------------------+-----------------------------------------+|sort_array (age_ Freqitems, True) |sort_array (Yearsmarried_freqitems, True) |sort_array (religiousness_freqitems , true) |+------------------------------------------------------+-----------------------------------------------+ -----------------------------------------+| [17.5, 22.0, 27.0, 32.0, 37.0, 42.0, 47.0, 52.0, 57.0]| [0.125, 0.417, 0.75, 1.5, 4.0, 7.0, 10.0, 15.0]| [1.0, 2.0, 3.0, 4.0, 5.0] |+------------------------------------------------------+------------------------ -----------------------+-----------------------------------------+//The element of the collection field Val F2 = Data.stat.freqItems (Array (" Education "," occupation "," rating ")) f2:org.apache.spark.sql.DataFrame = [Education_freqitems:array<double> Occupation_freqitems:array<double> ... 1 more Field]f2.show (truncate = false) +-----------------------------------------+-----------------------------------          +-------------------------+|education_freqitems |occupation_freqitems |rating_freqitems |+-----------------------------------------+-----------------------------------+-------------------------+| [17.0, 20.0, 14.0, 16.0, 9.0, 18.0, 12.0]| [2.0, 5.0, 4.0, 7.0, 1.0, 3.0, 6.0]| [2.0, 5.0, 4.0, 1.0, 3.0]|+-----------------------------------------+-----------------------------------+--------- ----------------+//The elements of an array f2.selectexpr ("Sort_array (Education_freqitems)", "Sort_array (Occupation_freqitems)", "Sort_array (Rating_freqitems)"). Show (truncate = false) +-----------------------------------------+------------ --------------------------+----------------------------------+|sort_array (Education_freqitems, True) |sort_array (Occupation_freqitems, True) |sort_array (Rating_freqitems, True) |+-----------------------------------------+----- ---------------------------------+----------------------------------+| [9.0, 12.0, 14.0, 16.0, 17.0, 18.0, 20.0]| [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0] | [1.0, 2.0, 3.0, 4.0, 5.0] |+-----------------------------------------+--------------------------------------+----- -----------------------------+

Statistical analysis of exploratory data of SPARK2 dataframestatfunctions

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.