Summary of correlation of two-polynomial coefficients

Source: Internet
Author: User

Note: There are no special instructions, the two-item indicator k is an integer (without special instructions, K can take all integers), for the above indicator, R represents all numbers (integers and real numbers), and n is an integer.

1, combinatorial number definition: $\begin{pmatrix}r\\ k\end{pmatrix}=\left\{\begin{matrix}\frac{r (r-1) ... (r-k+1)} {k (k-1) ... (2) (1)}; K\geq 0 \ 0; K<0 \end{matrix}\right.$ here k is an integer, R can be an integer or a real number.

2, $\begin{pmatrix}n\\ k\end{pmatrix}=\frac{n!} K! (N-K)!} =\frac{n!} {(n (n-k))! (N-K)!} =\begin{pmatrix}n\\ n-k\end{pmatrix}$ here n,k is an integer, and $n\geq 0$. Note that there is a limit to n here. K does not matter, if K is less than 0, both sides are 0.

3, $k \begin{pmatrix}r\\ k\end{pmatrix}=r\begin{pmatrix}r-1\\ k-1\end{pmatrix}$,$ (r-k) \begin{pmatrix}r\\ k\end{ Pmatrix}=r\begin{pmatrix}r-1\\ k\end{pmatrix}$. This is true of all the numbers, and it is understood that for the first equation, both sides are k-th polynomial of R, and when R takes any integer, the polynomial on both sides is equal. Two k-th polynomial has an infinite number of points equal, so even a polynomial identity. A second explanation is similar.

4. Addition formula: $\begin{pmatrix}r\\ k\end{pmatrix}=\begin{pmatrix}r-1\\ k\end{pmatrix}+\begin{pmatrix}r-1\\ k-1\end{ pmatrix}$.

5, $\begin{pmatrix}r+n+1\\ n\end{pmatrix}=\begin{pmatrix}r+n\\ n\end{pmatrix}+\begin{pmatrix}r+n\\ N-1\end{pmatrix } $,$\begin{pmatrix}r+n\\ n-1\end{pmatrix}=\begin{pmatrix}r+n-1\\ n-1\end{pmatrix}+\begin{pmatrix}r+n-1\\ n-2\end{ pmatrix}$, in this way each time to expand the back of this item, and finally get $\begin{pmatrix}r+n+1\\ n\end{pmatrix}=\sum_{k=0}^{n}\begin{pmatrix}r+k\\ k\end{ Pmatrix}=\sum _{k\leq n}\begin{pmatrix}r+k\\ K\end{pmatrix} $. Similarly, if each of the preceding items is expanded, the last one can be obtained: $\begin{pmatrix}n+1\\ m+1\end{pmatrix}=\sum_{k=0}^{n}\begin{pmatrix}k\\ m\end{pmatrix}$

6, $\begin{pmatrix}r\\ k\end{pmatrix}= ( -1) ^{k}\begin{pmatrix}k-r-1\\ k\end{pmatrix}$

7, $\sum _{k\leq m}\begin{pmatrix}r\\ K\end{pmatrix} ( -1) ^{k}=\sum _{k\leq m}\begin{pmatrix}k-r-1\\ k\end{pmatrix}=\ begin{pmatrix}-r+m\\ m\end{pmatrix}= ( -1) ^{k}\begin{pmatrix}r-1\\ m\end{pmatrix}$ The first third equal sign runs Equation 6, and the second equals sign uses the first formula in 5.

8, $\sum _{k\leq m}\begin{pmatrix}r\\ K\end{pmatrix} (\frac{r}{2}-k) =\sum_{k=0}^{m}\begin{pmatrix}r\\ K\end{pmatrix} (\FRAC{R}{2}-K) $
$=\sum_{k=0}^{m} (\begin{pmatrix}r\\ k\end{pmatrix}\frac{r}{2}-k\begin{pmatrix}r\\ K\end{pmatrix}) =\sum_{k=0}^{m} (\begin{pmatrix}r\\ k\end{pmatrix}\frac{r}{2}-r\begin{pmatrix}r-1\\ K-1\end{pmatrix}) $
$=\frac{r}{2}\sum_{k=0}^{m} (\begin{pmatrix}r\\ k\end{pmatrix}-2\begin{pmatrix}r-1\\ K-1\end{pmatrix}) $
$=\frac{r}{2}\sum_{k=0}^{m} (\begin{pmatrix}r-1\\ k\end{pmatrix}-\begin{pmatrix}r-1\\ K-1\end{pmatrix}) $
$=\frac{r}{2}\begin{pmatrix}r-1\\ m\end{pmatrix}=\frac{m+1}{2}\begin{pmatrix}r\\ m+1\end{pmatrix}$ The third equals sign uses the first of Equation 3, the fifth equals to equation four, and the last equals to the first of equation three.

9, $ (x+y) ^{n}=\sum_{k=0}^{n}\begin{pmatrix}n\\ k\end{pmatrix}x^{k}y^{n-k}=\sum_{k}\begin{pmatrix}n\\ k\end{ pmatrix}x^{k}y^{n-k}$, where n is a non-negative integer.

10, $\sum_{k\leq m}\begin{pmatrix}m+r\\ k\end{pmatrix}x^{k}y^{m-k}=\sum_{k\leq m}\begin{pmatrix}-r\\ K\end{pmatrix} (-X) ^{k} (X+y) ^{m-k}$,m is an integer.
Proof: First, when M is negative, both sides are obviously 0. So I just need to prove that M is a non-negative integer case. Here r can take all the numbers. We assume that R is an integer that satisfies the $-m\leq r\leq 0$, $r +m\geq 0$
$ (x+y) ^{m+r}y^{-r}=y^{-r}\sum_{k=0}^{m+r}\begin{pmatrix}m+r\\ k\end{pmatrix}x^{k}y^{m+r-k}=\sum_{k=0}^{m+r}\ Begin{pmatrix}m+r\\ k\end{pmatrix}x^{k}y^{m-k}$= left (by Equation 9 only $r+m\geq 0$ can be expanded)
$ (x+y) ^{m+r}y^{-r}= (x+y) ^{m+r} (-x+x+y) ^{-r}= (x+y) ^{m+r}\sum_{k=0}^{-r}\begin{pmatrix}-r\\ K\end{pmatrix} (-X) ^{k } (X+y) ^{-r-k}$
$=\sum_{k=0}^{-r}\begin{pmatrix}-r\\ K\end{pmatrix} (-X) ^{k} (x+y) ^{m-k}$= right
All when R takes 0,-1,-2,..,-m the left and right sides are equal, and both sides are the M-polynomial of R, but there are at least m+1 points equal, so the two sides are identical.

11, in Formula 10, make X=-1,y=1, can get $\sum _{k\leq m}\begin{pmatrix}m+r\\ K\end{pmatrix} ( -1) ^{k}=\begin{pmatrix}-r\\ m\end{ pmatrix}$. If you take x=y=1,r=m+1: $\sum _{k\leq m}\begin{pmatrix}2m+1\\ k\end{pmatrix}=\sum _{k\leq m}\begin{pmatrix}m+k\\ k\end{pmatrix}2^{m-k}$, because $\sum _{k}\begin{pmatrix}2m+1\\ k\end{pmatrix}=2^{2m+1}$, so $\sum _{k\leq M}\begin{pmatrix }2m+1\\ k\end{pmatrix}=2^{2m}$, so $\sum _{k\leq m}\begin{pmatrix}m+k\\ k\end{pmatrix}2^{-k}=2^{m}$

12, $\begin{pmatrix}r\\ m\end{pmatrix}\begin{pmatrix}m\\ k\end{pmatrix}=\begin{pmatrix}r\\ k\end{pmatrix}\begin{ Pmatrix}r-k\\ m-k\end{pmatrix}$, this can be proved right by defining the direct expansion.

13, $\sum _{k}\begin{pmatrix}r\\ m+k\end{pmatrix}\begin{pmatrix}s\\ n-k\end{pmatrix}=\begin{pmatrix}r+s\\ m+n\end{ Pmatrix}$,m,n is an integer.
Proof: replace n with k-m instead of k,n-m, can get: $\sum _{k}\begin{pmatrix}r\\ k\end{pmatrix}\begin{pmatrix}s\\ n-k\end{pmatrix}=\begin{ Pmatrix}r+s\\ n\end{pmatrix}$, where n is the original n+m. This formula can be understood from the meaning, it means that from the R girls Choose K Girls, from S boys choose N-k Boys all the situation, is from R+s medium select N.

14, $\sum _{k}\begin{pmatrix}l\\ m+k\end{pmatrix}\begin{pmatrix}s\\ n+k\end{pmatrix}=\begin{pmatrix}l+s\\ l-m+n\end {pmatrix}$, $l \geq 0$,m,n is an integer.
Proof: The formula 2 is available: $\begin{pmatrix}l\\ m+k\end{pmatrix}=\begin{pmatrix}l\\ l-m-k\end{pmatrix}$, so replace it becomes equation 13.

15, $\sum _{k}\begin{pmatrix}l\\ m+k\end{pmatrix}\begin{pmatrix}s+k\\ N\end{pmatrix} ( -1) ^{k}= ( -1) ^{l+m}\begin{ Pmatrix}s-m\\ N-l\end{pmatrix},l\geq 0$,m,n is an integer
Proof: Mathematical induction, making $f (L) =\sum _{k}\begin{pmatrix}l\\ m+k\end{pmatrix}\begin{pmatrix}s+k\\ N\end{pmatrix} ( -1) ^{k}$,l=0 in addition to k= The remainder of-m is 0, so $f (0) =\begin{pmatrix}s-m\\ N\end{pmatrix} ( -1) ^{m}$. Assume that all numbers smaller than L $p$ have $f (p) =\begin{pmatrix}s-m\\ n-p\end {Pmatrix} ( -1) ^{p+m}$.
$f (l) =\sum _{k}\begin{pmatrix}l\\ m+k\end{pmatrix}\begin{pmatrix}s+k\\ N\end{pmatrix} ( -1) ^{k}$
$=\sum _{k} (\begin{pmatrix}l-1\\ M+k\end{pmatrix} +\begin{pmatrix}l-1\\ M+k-1\end{pmatrix}) \begin{pmatrix}s+k\\ n\ End{pmatrix} ( -1) ^{k}$
$=\sum _{k}\begin{pmatrix} l-1\\ M+k\end{pmatrix} \begin{pmatrix}s+k\\ N\end{pmatrix} ( -1) ^{k}+\sum _{k} \begin{ pmatrix}l-1\\ M+k-1\end{pmatrix} \begin{pmatrix}s+k\\ N\end{pmatrix} ( -1) ^{k}$
$=f (L-1) + ( -1) ^{l+m}\begin{pmatrix}s-m+1\\ n-l+1\end{pmatrix}$
$= ( -1) ^{l+m-1}\begin{pmatrix}s-m\\ n-l+1\end{pmatrix}+ ( -1) ^{l+m}\begin{pmatrix}s-m+1\\ n-l+1\end{pmatrix}$
$= ( -1) ^{l+m} (\begin{pmatrix}s-m+1\\ n-l+1\end{pmatrix}-\begin{pmatrix}s-m\\ N-l+1\end{pmatrix}) $
$= ( -1) ^{l+m}\begin{pmatrix}s-m\\ n-l\end{pmatrix}$


16, $\sum _{k\leq l}\begin{pmatrix}l-k\\ m\end{pmatrix}\begin{pmatrix}s\\ K-n\end{pmatrix} ( -1) ^{k}= ( -1) ^{l+m}\begin {pmatrix}s-m-1\\ L-m-n\end{pmatrix},l,m,n\geq 0$,l,m,n are integers. The same is used in mathematical induction, the addition of the formula to take apart the first left.

17, $\sum _{-q\leq k\leq l}\begin{pmatrix}l-k\\ m\end{pmatrix}\begin{pmatrix}q+k\\ n\end{pmatrix}=\begin{pmatrix}l+q +1\\ M+n+1\end{pmatrix},n,m\geq 0,l+q\geq 0$, all integers.
Proof: $\sum _{-q\leq k\leq l}\begin{pmatrix}l-k\\ m\end{pmatrix}\begin{pmatrix}q+k\\ n\end{pmatrix}$
$=\sum _{0\leq K+q\leq l+q}\begin{pmatrix}l+q-(k+q) \ m\end{pmatrix}\begin{pmatrix}q+k\\ n\end{pmatrix}=\sum _{0\leq K\leq l+q}\begin{pmatrix}l+q-k\\ m\end{pmatrix}\begin{pmatrix}k\\ n\end{pmatrix}$, so now just proof: $\sum _{0\leq k\leq l+q}\ begin{pmatrix}l+q-k\\ m\end{pmatrix}\begin{pmatrix}k\\ n\end{pmatrix}=\begin{pmatrix}l+q+1\\ M+n+1\end{pmatrix},n , M\geq 0,l+q\geq 0$, make $p=l+q$, then just prove it now: $\sum _{0\leq k\leq p}\begin{pmatrix}p-k\\ m\end{pmatrix}\begin{pmatrix}k\\ n\ end{pmatrix}=\begin{pmatrix}p+1\\ M+n+1\end{pmatrix},n,m,p\geq 0$. Now, using the mathematical induction method, the first item can be opened with the addition formula.

Summary of correlation of two-polynomial coefficients

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.