TensorFlow Learning Notes-convolution, deconvolution, empty convolution

Source: Internet
Author: User
convolution

The convolution function is:

tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=none,
           Data_format=none, Name=none)

Input for one-D inputs, fileter for filters (convolution core), d, usually [height, width, Input_dim, output_dim],height, width, respectively, the volume of the kernel of the high, wide. Input_dim, Output_dim the table input dimension and output dimension separately.

Import TensorFlow as tf

x1 = tf.constant (1.0, Shape=[1, 5, 5, 3])
x2 = tf.constant (1.0, Shape=[1, 6, 6, 3])
ke  Rnel = Tf.constant (1.0, Shape=[3, 3, 3, 1])
y1 = tf.nn.conv2d (x1, kernel, strides=[1, 2, 2, 1], padding= "SAME")
y2 = tf.nn.conv2d (x2, Kernel, strides=[1, 2, 2, 1], padding= "SAME")

sess = tf. Session ()
Tf.global_variables_initializer (). Run (session=sess)
X1_cov,  x2_cov = Sess.run ([y1, y2])

print (X1_cov.shape)
print (X2_cov.shape)

Reverse Convolution

The inverse convolution function is:

Tf.nn.conv2d_transpose (value,
                     filter,
                     output_shape,
                     strides,
                     padding= "SAME",
                     data_format= " NHWC ",
                     Name=none)

Output_shape is the output shape, because it is the reverse process of the convolution, so the input output of the filter here is the dimension position Exchange, [height, width, output_channels, in_channels].

Import TensorFlow as tf

x1 = tf.constant (1.0, Shape=[1, 5, 5, 3])
x2 = tf.constant (1.0, Shape=[1, 6, 6, 3])
ke  Rnel = Tf.constant (1.0, Shape=[3, 3, 3, 1])
y1 = tf.nn.conv2d (x1, kernel, strides=[1, 2, 2, 1], padding= "SAME")
y2 = tf.nn.conv2d (x2, Kernel, strides=[1, 2, 2, 1], padding= "SAME")
y3 = Tf.nn.conv2d_transpose (y1,kernel,output_shape =[1,5,5,3],
    strides=[1,2,2,1],padding= "SAME")
Y4 = Tf.nn.conv2d_transpose (y2,kernel,output_shape=[ 1,6,6,3],
    strides=[1,2,2,1],padding= "SAME")
sess = tf. Session ()
Tf.global_variables_initializer (). Run (session=sess)
X1_cov,  X2_cov,y1_decov,y2_decov = Sess.run ([Y1, Y2,y3,y4]) print (x1_cov.shape) print (x2_cov.shape) print (
y1_decov.shape
) Print (Y2_decov.shape)


Note that Output_shape needs to be specified according to input shape,filter shape and output_dim, but not arbitrarily, for example

Y4 = Tf.nn.conv2d_transpose (y2,kernel,output_shape=[1,5,5,3],
    strides=[1,2,2,1],padding= "SAME")

Get Y4 shape (1, 5, 5, 3), but if set output_shape=[1,7,7,3],

Y4 = Tf.nn.conv2d_transpose (y2,kernel,output_shape=[1,7,7,3],
    strides=[1,2,2,1],padding= "SAME")

There is an error:

Invalidargumenterror (above for traceback): Conv2dslowbackpropinput:size of Out_backprop doesn ' t match computed:actu Al = 3, computed = 4

[[Node:conv2d_transpose_1 = Conv2dbackpropinput[t=dt_float, data_format= "NHWC", padding= "SAME", Strides=[1, 2, 2, 1], Use_cudnn_on_gpu=true, _device= "/job:localhost/replica:0/task:0/gpu:0"] (Conv2d_transpose_1/output_shape, Const_2 , Conv2d_1)]]
 [[node:conv2d_transpose/_5 = _recv[client_terminated=false, recv_device= "/job:localhost/replica : 0/task:0/cpu:0 ", send_device="/job:localhost/replica:0/task:0/gpu:0 ", Send_device_incarnation=1, Tensor_name=" Edge_23_conv2d_transpose ", Tensor_type=dt_float, _device="/job:localhost/replica:0/task:0/cpu:0 "] [)]]
void convolution (dilated convolution):

The void convolution function is:

tf.nn.atrous_conv2d (value, filters, rate, padding, name=none)

The Fileter is a filter (convolution kernel), the same format as the convolution, for [height, width, Input_dim, output_dim].rate for the input sampling step (sample stride).

X1 = Tf.constant (1.0, Shape=[1, 5, 5, 3]) kernel = tf.constant (
1.0, Shape=[3, 3, 3, 1])
y5=tf.nn.atrous_conv2d (x1, kernel,10, ' SAME ')

Y5.shape is (1, 5, 5, 1).

The full calling code is:

import tensorflow as TF x1 = tf.constant (1.0, Shape=[1, 5, 5, 3]) x2 = tf.constant (1.0, Shape=[1 , 6, 6, 3]) kernel = tf.constant (1.0, Shape=[3, 3, 3, 1)) Y1 = tf.nn.conv2d (x1, kernel, strides=[1, 2, 2, 1], padding= "SAM E ") y2 = tf.nn.conv2d (x2, Kernel, strides=[1, 2, 2, 1], padding=" SAME ") Y3 = Tf.nn.conv2d_transpose (y1,kernel,output_shape =[1,5,5,3], strides=[1,2,2,1],padding= "SAME") Y4 = Tf.nn.conv2d_transpose (y2,kernel,output_shape=[1,6,6,3), Stride s=[1,2,2,1],padding= "SAME") y5=tf.nn.atrous_conv2d (x1,kernel,10, ' SAME ') Sess = tf. Session () Tf.global_variables_initializer (). Run (session=sess) X1_cov, X2_cov,y1_decov,y2_decov,y5_dicov = Sess.run (

[Y1, Y2,y3,y4,y5]) Print (x1_cov.shape) print (x2_cov.shape) print (y1_decov.shape) print (y2_decov.shape) print (Y5_dicov.shape) 

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.