The analysis of the circuit by the programming realization

Source: Internet
Author: User

% circuit parametersr = round (100*rand (8,1)) V0 = round (100*RANDN)% Kirchoff ' S voltage lawa = [1 -1  0  0     0   1 -1  0    -1  0  1  0      0 -1  0  0     0  0 - 1  1     1  0  0  0      0  0  0 -1    -1  0  0  1]%  symbolicallysymr = sym (' [r12 r13 r14 r23 r34 r25 r35 r45] ') ; R = a ' *diag (SYMR) *a% numerically r = a ' *diag (R) *a;b = [0 0 0  v0] ' i = r\[0 0 0 v0] '% kirchoff ' s current lawb = [1  -1  0  0     1  0 -1  0     1   0  0 -1     0  1 -1  0      0  0  1 -1     0  1  0   0     0  0  1  0      0  0  0  1]% symbolicallysymg = sym (' [G12 g13 g14  G23 G34 G25 G35 G45] '); G = b ' *diag (SYMG) *b% numerically g = 1./r;g35 = g (7); G = b ' *diag (g) *bc = [0 0 g35*v0 0] ' v = g\c% check  Consistencyd = [0 0 0 0 0 0 v0 0] '; [(b*v-d)./(A*i)  r]

The above MATLAB program has carried on the simulation and the simulation to the circuit characteristic.

The shape of the circuit diagram is this:

Where the current direction is clockwise.

Based on these parameters given in the circuit, combined with the KCl(kirchoff's current law), KVL(Kirchoff's voltage law ) to analyze it.

X = Randn Returns a random scalar drawn from the standard normal distribution.

Sym Create the symbolic variables

X = Rand Returns a single uniformly distributed random number in the interval (0,1).

X = rand (n) returns an n-by-n matrix of random numbers

The following statement returns a line vector consisting of a symbolic variable.

>> sym (' [R12 r13 R14 r23 r34 r25 r35 r45] ')

Ans =

[R12, R13, R14, R23, R34, R25, R35, R45]

Further analysis, put it in the diagonal position of the matrix, the resulting matrix is the shape of this:

>> symr = sym (' [R12 r13 R14 r23 r34 r25 r35 r45] ');

>> diag (SYMR)

Ans =

[R12, 0, 0, 0, 0, 0, 0, 0]

[0, R13, 0, 0, 0, 0, 0, 0]

[0, 0, R14, 0, 0, 0, 0, 0]

[0, 0, 0, r23, 0, 0, 0, 0]

[0, 0, 0, 0, R34, 0, 0, 0]

[0, 0, 0, 0, 0, R25, 0, 0]

[0, 0, 0, 0, 0, 0, R35, 0]

[0, 0, 0, 0, 0, 0, 0, R45]

>> A ' *diag (SYMR) *a

Ans =

[R12 + R14 + R25 + r45,-r12,-r14,-r45]

[-r12, R12 + R13 + r23,-r13, 0]

[-r14,-r13, R13 + R14 + R34,-r34]

[-r45, 0,-r34, R34 + R35 + r45]

The resistor matrix is obtained.

The analysis of the circuit by the programming realization

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.