The introduction of the maximal subarray is only divided into recursive solution, brute force solution, and memory scanning method.

Source: Internet
Author: User

#include <iostream> #include <vector>using namespace std;/********************************************* The method of dividing and administering, using the idea of recursion//Ugly_chen 2014.11.3 22:24//Description: Divides the array into two parts, the right part and the left part , or the sum of the right and left parts.//—————————————————————— "Time: O (NLOGN)/******************************************************** /int find_max_cross_subarray (int a[], int left, int mid, Int. right) {int left_sum = 0; int max_left_sum = 0;for (int i = mid; I >= left; i--) {left_sum + = a[i];if (Left_sum > Max_left_sum) {max_left_sum = Left_sum;}} int right_sum = 0;int max_right_sum = 0;for (int i = mid + 1; I <= right; i++) {right_sum + = a[i];if (Right_sum > Max _right_sum) {max_right_sum = Right_sum;}} return max_left_sum + max_right_sum;} int Find_max_subarray (int a[], int left, int. right) {int left_sum, right_sum, cross_sum;if (left = = right) {return a[left];} Else{int mid = (left + right)/2;left_sum = Find_max_subarray (A, left,mid); RIGht_sum = Find_max_subarray (A, mid + 1, right); cross_sum = Find_max_cross_subarray (A, left, Mid, right);} if (left_sum >= right_sum && left_sum >= cross_sum) return left_sum;  else if (right_sum >= left_sum && right_sum >= cross_sum)//Right return right_sum; return cross_sum;}  /* —————————————————————————————————————————————————————————————————————————————————————————— *///Method Two: The most violent method This uses the vector array time: O (n^3)//introduction: Sum each possible combination, then compare the largest and./* ——————————————————————————————————————————————————— ———————————————————————————————————————— */int find_max_array2 (const vector<int> &a) {int max_sum = 0;for ( size_t i = 0; I < a.size (); i++) {for (Auto J = i, J < A.size (), j + +) {int this_sum = 0;for (auto k = i; k <= J; k++) This_sum + = A[k];if (this_sum >max_sum) max_sum = This_sum;}} return max_sum;} /************************************************************************************************///method Three: Simplification of the above algorithm (actually removing the second layer of the above loop)//introduction: or all the combined and,Each cycle is calculated to take the largest and save in Max_sum.//—————————————————————— Time: O (n^2)/************************************************* /int find_max_array3 (const vector<int> &a) {int max_sum = 0 for (size_t i = 0; i < a.size (); i++) {int this_sum = 0;for (Auto j = i; J < A.size (); j + +) {this_sum + = a[j];if (thi s_sum>max_sum) max_sum = This_sum;}} return max_sum;} /*————————————————————————————————————————————————————————————————————————————————————————————————————————————— ——————————— *///method Four: The elements in the array to scan, with this_sum record scanning elements and, starting with the first element scanning, this_sum can not be less than 0, if less than 0, then//this_sum from the new record scanning elements and ( This time this_sum set to 0), if This_sum is not 0, then compared with max_sum (greater than max_sum that will this_sum the//value to max_sum, not more than the same) meaning is scanned to the largest and saved in Max_sum. —————————————————————— Time: O (N)/* ———————————————————————————————————————————————————————————————————————————— ————————————————————————————————————————————— */int find_max_array4 (const vector<int> &a) {int max_sum = 0; int this_sum = 0;for (size_t i = 0; i < A.SIze (); i++) {this_sum + = a[i];if (This_sum > Max_sum) max_sum = This_sum;else if (this_sum < 0) this_sum = 0;} return max_sum;} int main () {int a[] = {9, 6,-7, 1, 8,-20, 5, 3, 4, 0, 2};std::cout << Find_max_subarray (A, 0, ten) << Std::en Dl;vector<int> AVec = {9, 6,-7, 1, 8, -20, 5, 3, 4, 0, 2};std::cout << find_max_array2 (AVEC) << std:: Endl;std::cout << find_max_array3 (aVec) << std::endl;std::cout << find_max_array4 (AVEC) << std :: Endl;return 0;}

The introduction of the maximal subarray is only divided into recursive solution, brute force solution, and memory scanning method.

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.