The longest common subsequence--dynamic programming algorithm

Source: Internet
Author: User
Tags addall

Consider how the longest common subsequence problem is decomposed into sub-problems, set a= "A0,a1,...,am-1", b= "b0,b1,...,bn-1", and z= "Z0,z1,...,zk-1" as their longest common subsequence. It is not difficult to prove the following properties:

(1) If am-1=bn-1, then zk-1=am-1=bn-1, and "Z0,z1,...,zk-2" is a "a0,a1,...,am-2" and "b0,b1,...,bn-2" a longest common sub-sequence;

(2) If the am-1!=bn-1, if the zk-1!=am-1, the implication "z0,z1,...,zk-1" is "a0,a1,...,am-2" and "b0,b1,...,bn-1" a longest common sub-sequence;

(3) If am-1!=bn-1, then if zk-1!=bn-1, implication "z0,z1,...,zk-1" is a "a0,a1,...,am-1" and "b0,b1,...,bn-2" a longest common sub-sequence.

The problem is written in a recursive style:

Backtracking outputs the longest common subsequence process:

 Packagetest;Importjava.util.ArrayList;Importjava.util.List;/*** @ClassName: LCS * @Description: TODO *@author: * @Date: 2015-06-29 12:50:14*/ Public classLCS {Static intmax=2;  Public StaticList<string> Getlcs (int[] C,intIintj, string X, String y) {List<String> T =NewArraylist<string>(); if(i = = 0 | | j = 0){            ; }Else if(C[i][j] = = 1) {T= Getlcs (c,i-1,j-1, x, y); if(t.size () = = 0) T.add ("");  for(intk = 0; K < T.size (); k++) {String v=T.get (k); if(V.length () > 0){                    intit = Integer.parseint (v.substring (V.lastindexof (") +1,v.lastindexof (", "))); if(I-it > 2) {t.remove (k); Continue; }                    intJT = Integer.parseint (v.substring (V.lastindexof (",") +1,v.lastindexof (")"))); if(J-jt > 2) {t.remove (k); Continue; }} t.set (K, T.get (k)+ X.charat (i) + "(" +i+ "," +j+ ")"); }        }Else if(C[i][j] = = 2) {T= Getlcs (c,i-1, J,x,y); }Else if(C[i][j] = = 3) {T.addall (Getlcs (c,i-1, j,x,y)); T.addall (Getlcs (c,i,j-1, x, y)); }Else{T= Getlcs (c,i,j-1, x, y); }        returnT; }         Public Static intLcslength (int[] C,intIintJbyte[] xx,byte[] yy,int[] max) {                if(i = = 0 | | j = 0) {C[i][j]= 0; }Else if(Xx[i] = =Yy[j]) {Max[i][j]= 1; C[I][J]= Lcslength (C,i-1,j-1,xx,yy,max) +1; }Else {            intII = lcslength (c,i-1, J,xx,yy,max); intJJ = Lcslength (c,i,j-1, Xx,yy,max); if(ii >JJ) Max[i][j]= 2; Else if(ii = =JJ) Max[i][j]= 3; C[I][J]=Math.max (II,JJ); }        returnC[i][j]; }             Public Static voidMain (string[] args) {String x= "Abcbdab"; String y= "Bdcaba"; byte[] xx =x.getbytes (); byte[] yy =y.getbytes (); intC[][] =New int[X.length ()][y.length ()]; intMax[][] =New int[X.length ()][y.length ()]; System.out.println (Lcslength (C,x.length ()-1,y.length ()-1, Xx,yy,max)); List<String> list = Getlcs (Max,x.length () -1,y.length ()-1, x, y);  for(String v:list) System.out.println (v); System.out.print ("\ n");  for(intj = 1; J < Y.length (); j + +) System.out.print (Y.charat (j)+ " "); System.out.println ("");  for(inti = 1; I < x.length (); i++) {System.out.print (X.charat (i)+ " ");  for(intj = 1; J < Y.length (); j + +) System.out.print (C[i][j]+ " "); System.out.println (" "); }            }}

The longest common subsequence--dynamic programming algorithm

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.