Why would there be a clue to a binary tree?
The two-fork tree is a nonlinear structure, and the traversal of the binary tree is accomplished by recursive or non-recursive traversal with the aid of a stack. When a binary tree is used as a storage structure, it takes a node to get the left child and the right child of the node, and can not directly get the precursor or successor of any of the nodes ' traversal sequences. in order to save the information needed in the traversal, we use the null pointer in the binary tree to the left and right subtree to hold the node's precursor and subsequent information.
int a1[10] = {n-A, ' # ', ' # ', 4, ' # ', ' # ', 5,6};
650) this.width=650; "src=" Http://s1.51cto.com/wyfs02/M02/7F/B7/wKiom1cp9S_xj-OMAAAbVLPyZo0804.png "style=" float: none; "title=" 1.PNG "alt=" Wkiom1cp9s_xj-omaaabvlpyzo0804.png "/>650) this.width=650; src= http://s1.51cto.com/ Wyfs02/m02/7f/b5/wkiol1cp9gxz7lhoaaabbffb62m491.png "title=" 2.PNG "style=" Float:none; "alt=" Wkiol1cp9gxz7lhoaaabbffb62m491.png "/>
650) this.width=650; "src=" Http://s3.51cto.com/wyfs02/M02/7F/B5/wKioL1cp9gWxO1KhAAAaUcpuyJs248.png "style=" float: none; "title=" 3.PNG "alt=" Wkiol1cp9gwxo1khaaaaucpuyjs248.png "/>
Code implementation:
#pragma once#include <iostream>using namespace std;enum pointertag{thread,// Threaded link, //node};template <class t>struct binarytreenode//node {BinaryTreeNode ( Const t& data): _data (data), _left (null), _right (null), _lefttag (link), _righttag (link) {}t _data //data binarytreenode* _left; //left child binarytreenode* _right;//right child pointertag _lefttag;//left child clue sign pointertag _righttag;//right child clue sign};template <class t>class BINARYTREETHD{TYPEDEF&NBSP;BINARYTREENODE<T>&NBSP;NODE;PUBLIC:BINARYTREETHD () //parameterless constructor: _root ( NULL) {}BINARYTREETHD (Const t* a,size_t size,const t& invalue) //with the parameter constructor { &NBSP;SIZE_T&NBSP;INDEX&NBSP;=&NBSP;0;_ROOT&NBSP;=&NBSP;_BINARYTREETHD (A,size,index,invalue);} Void inorderthreading ()//sequence node* prev = null;_inorderthreading (_root,prev);} Void prevorderthreading ()//First order thread {NODE*&NBSP;PREV&NBSP; = null;_prevorderthreading (_root,prev);} Void postorderthreading ()//post-clue {node* prev = null;_postorderthreading (_root,prev);} VOID&NBSP;INORDERTHD ()//Middle sequence traversal {cout<< "in sequence traversal:" <<endl; Node* cur = _root;while (cur) {while (Cur->_lefttag == link) {cur = cur-> _left;} cout<<cur->_data<< " " while (Cur->_righttag == thread) {cur = cur- >_right;cout<<cur->_data<< " ";} Cur = cur->_right;}} VOID&NBSP;PREVORDERTHD ()//First Order traversal {cout<< "First order traversal:" <<endl; Node* cur = _root;while (cur) {while (Cur->_lefttag == link) {cout<<cur->_ data<< " "; cur = cur->_left;} cout<<cur->_data<< " "; cur = cur->_right;}} VOID&NBSP;POSTORDERTHD ()//post-Traversal//{//cout<< "post-Traversal:" <<endl;//node* cur = _root;////} PUBLIC:NODE*&NBSP;_BINARYTREETHD (const t* a,size_t size,sIze_t& index,const t& invalue)//Create tree {node* root = null;if (index < size && a[index] != invalue) {Root = new node (A[index]); root- >_LEFT&NBSP;=&NBSP;_BINARYTREETHD (A,size,++index,invalue); ROOT->_RIGHT&NBSP;=&NBSP;&NBSP;_BINARYTREETHD ( A,size,++index,invalue);} Return root;} Void _inorderthreading (Node* cur,node* &prev)//middle order Thread {if (cur == null) return;_ Inorderthreading (Cur->_left,prev); if (cur->_left == null) {cur->_lefttag = thread; Cur->_left = prev;} if (prev && prev->_right == null) {prev->_righttag = thread;prev- >_right = cur;} Prev = cur;_inorderthreading (Cur->_right,prev);} Void _prevorderthreading (Node* cur,node* &prev)//First order thread {if (cur == null) return;if ( Cur->_left == null) //Pre-order clue {CUR->_LEFTTAG&NBSP;=&NBSp Thread;cur->_left = prev;} if (prev && prev->_right == null)//post-clue {prev->_righttag = thread; Prev->_right = cur;} Prev = cur;if (Cur->_lefttag == link) {_prevorderthreading (Cur->_left,prev);} if (Cur->_righttag == link) {_prevorderthreading (Cur->_right,prev);}} Void _postorderthreading (Node* cur,node* &prev)//post-threaded {if (cur == null) return;_ Postorderthreading (Cur->_left,prev); _postorderthreading (Cur->_right,prev); if (cur->_left == NULL) {Cur->_lefttag = thread;cur->_left = prev;} if (prev && prev->_right == null) {prev->_righttag = thread;prev- >_right = cur;} Prev = cur;} protected:node* _root;//root node};
Test code:
void Test () {int a1[10] = {A. # ', ' # ', 4, ' # ', ' # ', 5,6};int a2[15] = {1, 2, ' # ', 3, ' # ', ' # ', 4, 5, ' # ', 6, ' # ', 7, ' # ', ' # ', 8}; Binarytreethd<int> B (a2,15, ' # ');//b.inorderthreading ();//b.inorderthd (); b.prevorderthreading (); b. PREVORDERTHD ();//b.postorderthreading ();}
Pre-order test results:
650) this.width=650; "src=" Http://s2.51cto.com/wyfs02/M00/7F/B7/wKiom1cp9c-jPuOjAAALWtCf2x0785.png "title=" 4.PNG " alt= "Wkiom1cp9c-jpuojaaalwtcf2x0785.png"/>
This article from "Together to see the Stars" blog, reproduced please contact the author!
Threaded binary Tree