B. Race to 1 ultraviolet A 11762
The first contact with probability DP, I did not expect it to be DP...
First, you need to know the total expectation = the expectation of each thing × the probability of each thing happening
Then we can write a recursive formula based on this, which is also DP?
Assume that there are m prime numbers not less than X, and N qualitative factors of X (more accurate), then when X is expected, we can consider that X, X/pi p is the prime factor of X.
Therefore, it is not difficult to conclude that E (x) = 1 + (m-N)/ME (x) + 1/msigmae (x/PI) will add 1, because X is transferred to the back end, there is one more step.
// Updated: every case is run out, and the F array does not need memset... it will be 10 times faster! In the case
#include <iostream>#include <cstdio>#include <cstdlib>#include <cstring>using namespace std;const int maxn = 1000000+50;const double eps = 1e-10;int T, N, tot;int prime[maxn];double f[maxn];bool flag[maxn], done[maxn];void getPrime(){ for(int i = 2; i < maxn; i++) { if(!flag[i]) prime[tot++] = i; for(int j = 0; j < tot && prime[j]*i < maxn; j++) { flag[i*prime[j]] = true; if(i % prime[j] == 0) break; } }}double dp(int x){ if(done[x]) return f[x]; done[x] = true; int n, m; n = m = 0; for(int i = 0; i < tot && prime[i] <= x; i++) { n++; if(x % prime[i] == 0) { m++; f[x] += dp(x/prime[i]); } }// if(x == N) cout << n << ‘ ‘ << m << endl; return f[x] = (f[x]+n)/m;}int main(){#ifdef LOCAL freopen("B.in", "r", stdin);#endif getPrime(); scanf("%d", &T); for(int t = 1; t <= T; t++) { scanf("%d", &N); memset(done, 0, sizeof(done)); memset(f, 0, sizeof(f)); f[1] = 0.0; done[1] = true; dp(N); printf("Case %d: %.10lf\n", t, f[N]); } return 0;}
D. Jumping Mario ultraviolet (a) 11764
#include <iostream>#include <cstdio>#include <cstdlib>using namespace std;int T, n, now, high, low;int main(){ cin >> T; for(int t = 1; t <= T; t++) { high = 0; low = 0; cin >> n; for(int i = 0; i < n; i++) { int x; cin >> x; if(i == 0) { now = x; continue; } if(x > now) high++; else if(x < now) low++; now = x; } cout << "Case " << t << ": " << high << ‘ ‘ << low << endl; } return 0;}
J. Lighting away ultraviolet A 11770
The first reaction is indeed a strongly connected component... contraction point... but I am not familiar with... so I went to the yydfs method, but I was not enough IQ... I didn't debug it.
The positive solution is to reduce the point dyeing to determine the new graph entry into the 0 point.
Debugging for a long time... all kinds of small errors have been found, and finally fell out of the stack and forgot to increase the brackets...
#include <iostream>#include <cstdio>#include <cstdlib>#include <stack>#include <cstring>using namespace std;const int maxn = 100000+50;int T, n, m, idx, tot, cnt;int head[maxn], next[maxn], edge[maxn], dfn[maxn], low[maxn], in[maxn], type[maxn];bool instack[maxn], visit[maxn];stack<int> st;void add(int u, int v){ edge[tot] = v; next[tot] = head[u]; head[u] = tot++;}void tarjan(int u){ dfn[u] = low[u] = ++idx; st.push(u); instack[u] = true; visit[u] = true; for(int e = head[u]; e != -1; e = next[e]) { int v = edge[e]; if(!visit[v]) { tarjan(v); low[u] = min(low[u], low[v]); } else if(instack[v]) low[u] = min(low[u], dfn[v]); } if(dfn[u] == low[u]) { cnt++; while(!st.empty()) { int now=st.top(); st.pop(); instack[now]=0; type[now]=cnt; if(now == u) break; } }}int main(){#ifdef LOCAL freopen("J.in", "r", stdin);#endif scanf("%d", &T); for(int t = 1; t <= T; t++) { scanf("%d%d", &n, &m); memset(next, -1, sizeof(next)); memset(head, -1, sizeof(head)); memset(in, 0, sizeof(in)); memset(instack, 0, sizeof(instack)); memset(visit, 0, sizeof(visit)); tot = 0; idx = 0; cnt = 0; for(int i = 0; i < m; i++) { int u, v; scanf("%d%d", &u, &v); add(u, v); }// for(int i = 1; i <= n; i++)// if(!visit[i] && in[i] == 0) tarjan(i); for(int i = 1; i <= n; i++) if(!visit[i]) tarjan(i); int ans = 0; for(int i = 1; i <= n; i++) for(int e = head[i]; e != -1; e = next[e]) { if (type[i] != type[edge[e]]) in[type[edge[e]]]++; } for (int i = 1;i <= cnt;i++) if (in[i] == 0) ans++;// for(int i = 1; i <= n; i++)// if(in[i] == 0) cnt++; printf("Case %d: %d\n", t, ans); } return 0;}
During the competition, I only got a question... then J and B are really not strong enough... J is a bit confused. Now I understand it.
UESTC 2014 summer training #10 div.2