Test instructions: Give an undirected graph, n points, M edge, not connected, can re-edge, can be extra edge. Two questions, the first question: the sum of the shortest distance between arbitrary points. Second question: You must delete an edge and ask the first question to make the result larger.
Ideas:
In fact, they are all in the process of finding the shortest path.
The first question can Floyd solve, also can sssp solve. Note that any two points, (A, B) and (b,a) are different and are counted.
Second ask to be poor lift delete each edge, ask first. In order to reduce the complexity, assuming that the shortest path with Dijkstra, then you can use the first question generated in the tree, a total of n trees, each tree at most n-1 edge, if the poor lifting of the edge is not in the tree, then the tree of all the path is constant, do not have to calculate, otherwise need to calculate. So it is necessary to record the path and save the whole tree's edge set, while preserving the sum of any two-point path of each tree.
With the structure can solve the heavy edge, the problem should not be many, to pay attention to various details, wrong on the re-dozen, perhaps faster.
1#include <bits/stdc++.h>2 #defineLL Long Long3 #definePII pair<int,int>4 #defineINF 0x7f7f7f7f5 using namespacestd;6 Const intn= -;7 intN, M, L, edge_cnt;8vector<int>Vect[n];9 Ten structnode One { A int from, to, Dis,tag; - node () {}; -Nodeint from,intTo,intDisintTAG): from( from), to, dis (dis), tag (tag) {}; the}edge[2050]; - - voidAdd_node (int from,intTo,intDisinttag) - { +Edge[edge_cnt]=node ( from, to, DIS, tag); -vect[ from].push_back (edge_cnt++); + } A at intDist[n], vis[n], path[n]; -LL Dijkstra (ints) - { -memset (Dist,0x7f,sizeof(Dist)); -memset (Vis,0,sizeof(Vis)); - for(intI=0; i<=n; i++) path[i]=-1; in -priority_queue<pii,vector<pii>,greater<pii> >que; todist[s]=0; +Que.push (Make_pair (0, s)); - the while(!que.empty ()) * { $ intx=que.top (). Second;que.pop ();Panax Notoginseng if(Vis[x])Continue; -vis[x]=1; the for(intI=0; I<vect[x].size (); i++) + { ANode e=Edge[vect[x][i]]; the if(e.tag>0&& dist[e.to]>dist[e. from]+E.dis) + { -path[e.to]=Vect[x][i]; $Dist[e.to]=dist[e. from]+E.dis; $ Que.push (Make_pair (dist[e.to], e.to)); - } - } the } - WuyiLL sum=0; the for(intI=1; i<=n; i++ ) - { Wu if(Dist[i]>=inf) sum+=l;//not reach, press L to calculate - Elsesum+=Dist[i]; About } $ returnsum; - } - - LL Ans1[n]; A intcal () + { thememset (ANS1,0,sizeof(ans1)); -LL first=0; $unordered_set<int>Tree[n]; the for(intI=1; i<=n; i++) the { theans1[i]=Dijkstra (i); thefirst+=Ans1[i]; - //Collecting Edges in for(intk=1; k<=n; k++) the { the if(path[k]>=0)//Be aware of how to initialize About { the Tree[i].insert (Path[k]); theTree[i].insert (path[k]^1); the } + } - } the //another questionBayiLL second=0; the for(intI=0; i<edge_cnt; i+=2) the { -edge[i].tag=edge[i+1].tag=0; -LL sum=0; the for(intj=1; j<=n; J + +) the { the if(Tree[j].find (i) ==tree[j].end ())//It's a tree of J, to be counted . thesum+=Ans1[j]; - Else thesum+=Dijkstra (j); the } theSecond=Max (second, sum);94edge[i].tag=edge[i+1].tag=1; the } theprintf"%lld%lld\n", first, second);//only 1 spaces the }98 About intMain () - {101Freopen ("Input.txt","R", stdin);102 intA, B, C;103 while(SCANF ("%d%d%d", &n, &m, &l) = =3)104 { theEdge_cnt=0;106Memset (Edge,0,sizeof(Edge));107 for(intI=0; i<=n; i++) vect[i].clear ();108 for(intI=0; i<m; i++)109 { thescanf"%d%d%d",&a,&b,&c);111 if(a==b)Continue; theAdd_node (A,b,c,1);113Add_node (B,a,c,1); the } the cal (); the }117 return 0;118}
AC Code
UVA 4080 Warfare and Logistics Wars and logistics (shortest path tree, deformation)