[Zhan Xiang matrix theory exercise reference] exercise 4.17

Source: Internet
Author: User

17. (ando-Zhan) is set to $ A, B \ In M_n $ semi-definite, $ \ Sen {\ cdot} $ is an undo norm, then $ \ Bex \ Sen {(a + B) ^ r} \ Leq \ Sen {A ^ r + B ^ r }, \ Quad (0 <r \ Leq 1), \ EEx $ \ Bex \ Sen {(A + B) ^ r} \ geq \ Sen {A ^ r + B ^ r}, \ Quad (1 \ Leq r <\ infty ). \ EEx $

 

Proof: (1 ). verify when $0 <r \ Leq 1 $, $ \ Bex \ Sen {(A + B) ^ r} \ Leq \ Sen {A ^ r + B ^ r }. \ EEx $ is based on the fan principle. You only need to verify $ \ Bex S (a + B) ^ r) \ prec_w S (a ^ r + B ^ r ). \ EEx $ for $ \ forall \ 1 \ Leq k \ Leq N $, $ \ Bex \ sum _ {I = 1} ^ k \ lm_ I (a + B) ^ r) \ Leq \ sum _ {I = 1} ^ k \ lm_ I (a ^ r + B ^ r ). \ EEx $ is the proof of chapter 3 and question 11th, which is equivalent to proof: $ \ Bex \ Max _ {\ Sen {X_ I} = 1 \ atop I = 1, \ cdots, k} \ sum _ {I = 1} ^ k \ SEF {(a + B) ^ rx_ I, x_ I} \ Leq \ Max _ {\ Sen {X_ I} = 1 \ atop I = 1, \ cdots, k} \ sum _ {I = 1} ^ k \ SEF {(a ^ r + B ^ r) X_ I, X_ I }. \ EEx $ $ F (t) = t ^ r$ is an operator Monotonic function on $ [0, \ infty) $ with Integral Representation (4.13) $ \ Bex t ^ r = \ Al + \ beta T + \ int_0 ^ \ infty \ frac {st} {S + t} \ RD \ Mu (s ), \ quad \ beta \ geq 0. \ EEx $ we only need to prove that for $ S> 0 $, $ \ beex \ Bea \ Max _ {\ Sen {X_ I} = 1 \ atop I = 1, \ cdots, k} \ sum _ {I = 1} ^ k \ SEF {S (A + B) (Si + A + B) ^ {-1} X_ I, x_ I} & \ Leq \ Max _ {\ Sen {X_ I} = 1 \ atop I = 1, \ cdots, k} \ sum _ {I = 1} ^ k \ SEF {SA (Si + a) ^ {-1} X_ I, x_ I }\\& \ quad + \ sum _ {I = 1} ^ k \ SEF {Sb (Si + B) ^ {-1} X_ I, X_ I }. \ EEA \ eeex $ Replace $ A/S with $ A and B $ respectively, $ B/S $, that is, to prove $ \ beex \ Bea \ Max _ {\ Sen {X_ I} = 1 \ atop I = 1, \ cdots, k} \ sum _ {I = 1} ^ k \ SEF {(A + B) (I + A + B) ^ {-1} X_ I, x_ I} & \ Leq \ Max _ {\ Sen {X_ I} = 1 \ atop I = 1, \ cdots, k} \ sum _ {I = 1} ^ k \ SEF {A (I + a) ^ {-1} X_ I, x_ I }\\& \ quad + \ Max _ {\sen {X_ I} = 1 \ atop I = 1, \ cdots, k} \ sum _ {I = 1} ^ k \ SEF {B (I + B) ^ {-1} X_ I, X_ I }. \ EEA \ eeex $ select $ X_ I $ as the unit feature vector from the largest feature value of $ I $ under $ A + B $, that is, to prove $ \ Bex \ sum _ {I = 1} ^ k \ SEF {(A + B) (I + A + B) ^ {-1} X_ I, x_ I} \ Leq \ sum _ {I = 1} ^ k \ SEF {A (I + a) ^ {-1} X_ I, x_ I} + \ sum _ {I = 1} ^ k \ SEF {B (I + B) ^ {-1} X_ I, X_ I }. \ EEx $ note $ c = (I + A + B) ^ {-\ frac {1} {2 }}$, then $ \ BEX (A + B) (I + A + B) ^ {-1} = (a + B) C ^ 2 = C (a + B) C = CAC + CBC. \ EEx $ it must prove that $ \ bee \ label {4_17_a} \ sum _ {I = 1} ^ k \ SEF {cacx_ I, x_ I} \ Leq \ sum _ {I = 1} ^ k \ SEF {A (I + a) ^ {-1} X_ I, X_ I }, \ EEE $ \ bee \ label {4_17_ B} \ sum _ {I = 1} ^ k \ SEF {cbcx_ I, x_ I} \ Leq \ sum _ {I = 1} ^ k \ SEF {B (I + B) ^ {-1} X_ I, X_ I }. \ EEE $ the two proofs are the same, so only \ eqref {4_17_a} must be proved as follows. by $ \ beex \ BEA (a + B) X_ I = \ lm_ix_ I & \ rA (I + A + B) X_ I = (\ lm_ I + 1) x_ I \ & \ rA C ^ 2x_ I = \ frac {1} {1 + \ lm_ I} X_ I \ & \ rA cx_ I = \ frac {1} {\ SQRT {1 + \ lm_ I} X_ I \ EEA \ eeex $ $ X_ I $ is the unit feature vector from the small feature value $ \ mu_ I $ of $ C $, $ I = 1, \ cdots, K $. order $ \ Bex U_1 = (x_1, \ cdots, X_k ), \ EEx $ to prove $ \ bee \ label {4_17_tr} \ tr \ SEZ {U_1 ^ * cacu_1} \ Leq \ tr \ SEZ {U_1 ^ * a (a + i) ^ {-1} U_1 }. \ EEE $ set $ X_ I $ as defined above, $ I = k + 1, \ cdots, N $, $ \ Bex u_2 = (X _ {k + 1 }, \ cdots, X_n), \ quad u = (U_1, u_2), \ EEx $ then $ \ Bex cu_1 = u_1d_1, \ quad Cu_2 = u_2d_2, \ quad U \ mbox {}, \ EEx $ \ Bex d_1 = \ diag (\ mu_1, \ cdots, \ mu_k ), \ quad D_2 = \ diag (\ Mu _ {k + 1}, \ cdots, \ mu_n), \ quad \ mu_1 \ Leq \ cdots \ Leq \ mu_n. \ EEx $, $ \ beex \ Bea \ tr \ SEZ {U_1 ^ * cacu_1} & =\ Sen {A ^ \ frac {1} {2} cu_1} _ f ^ 2 \\& = \ Sen {u ^ * a ^ \ frac {1} {2} u_1d_1} _ f ^ 2 \ & =\ Sen {\ sex {U_1 ^ * a ^ \ frac {1} {2} u_1d_1 \ atop u_2 ^ * a ^ \ frac {1} {2} u_1d_1} _ f ^ 2 \ & = \ Sen {U_1 ^ * ^ \ frac {1} {2} u_1d_1} _ f ^ 2 + \ Sen {u_2 ^ * a ^ \ frac {1} {2} u_1d_1} _ f ^ 2 \\ & \ Leq \ mu_k ^ 2 \ Sen {U_1 ^ * a ^ \ frac {1} {2} u_1d_1} _ f ^ 2 + \ Sen {u_2 ^ * a ^ \ frac {1} {2} U_1} _ f ^ 2; \ tr \ SEZ {U_1 ^ * a (a + I) ^ {-1} U_1} & =\ tr \ SEZ {U_1 ^ * a ^ \ frac {1} {2} (a + I) ^ {-1} a ^ \ frac {1} {2} U_1 }\\\& \ geq \ tr \ SEZ {U_1 ^ * a ^ \ frac {1} {2} CA ^ \ frac {1} {2} U_1 }\\\\=\ Sen {ca ^ \ frac {1} {2} U_1 }_f ^ 2 \\\& = \ sen {U_1 ^ * a ^ \ frac {1} {2} c} _ f ^ 2 \\\\=\ Sen {U_1 ^ * a ^ \ frac {1} {2} Cu} _ f ^ 2 \\\&=\ Sen {U_1 ^ * a ^ \ frac {1} {2} (u_1d_1, u_2d_2 )} _ f ^ 2 \\\\\sen {U_1 ^ * a ^ \ frac {1} {2} u_1d_1 }_f ^ 2 + \ Sen {U_1 ^ * a ^ \ frac {1} {2} u_2d_2} _ f ^ 2 \ & \ geq \ Sen {U_1 ^ * a ^ \ frac {1} {2} u_1d_1} _ f ^ 2 + \ mu_k ^ 2 \ Sen {U_1 ^ * a ^ \ frac {1} {2} u_2} _ f ^ 2. \ EEA \ eeex $

 

(2 ). when $ r \ geq 1 $, make $ g (t) = t ^ r = f ^ {-1} (t) $, $ F (t) = t ^ \ frac {1} {r} $, then by (1), $ \ Bex S (F [G (A) + g (B)]) \ prec_w S (F [G (A)] + F [G (A)]) = S (A + B ). \ EEx $ by $ G $ non-negative incremental convex function, theorem 3.21, and ing theorem similar to Theorem 1.3, $ \ Bex S (G () + g (B) \ prec_ws (G (A + B )). \ EEx $ according to the fan's dominant principle, the conclusion is obtained.

[Zhan Xiang matrix theory exercise reference] exercise 4.17

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.