ZOJ 2675 Little Mammoth (computational geometry)

Source: Internet
Author: User
Tags acos

Round and rectangular area intersection

or triangulation to do it.

Code:

#include <stdio.h> #include <string.h> #include <stdlib.h> #include <math.h> #include < Algorithm>using namespace Std;const Double eps = 1e-8;const double pi = ACOs ( -1.0); int dcmp (double x) {if (x > EPs    ) return 1; return x <-eps? -1:0;}    struct point{double x, y;    Point () {x = y = 0;}    Point (Double A, double b) {x = a, y = b;}    inline void Read () {scanf ("%lf%lf", &x, &y);}    Inline point operator-(const-point-&b) const {return point (x-b.x, y-b.y);}    Inline point operator+ (const-point-&b) const {return point (x + b.x, y + b.y);}    Inline point operator* (const double &b) const {return point (x * b, y * b);}    inline double dot (const point &b) Const {return x * b.x + y * B.Y;} Inline Double Cross (const point &b, const point &c) const {return (b.x-x) * (c.y-y)-(c.x-x) * (B.Y-Y);    } inline double Dis (const point &b) const {return sqrt ((*this-b). dot (*this-b));} Inline bOol InLine (const point &b, const point &c) const//three points collinear {return!dcmp (cross (b, C));} The inline bool onseg (const point &b, const dot &c) const//points on the segment, including the endpoint {return InLine (b, c) && (*THIS-C). Dot (*this-b) < EPS;}}; Inline double min (double A, double b) {return a < b a:b;} Inline double max (double A, double b) {return a > b a:b;} Inline double Sqr (double x) {return x * x;} Inline double Sqr (const point &p) {return P.dot (p);} Point Linecross (const-point &a, const-point &b, const-point-&c, const-point-&d) {Double u = a.cross (b,    c), V = B.cross (A, D); Return Point ((c.x * v + d.x * u)/(U + V), (C.Y * v + d.y * u)/(U + V));} Double linecrosscircle (const-point &a, const-point &b, const-point-&r, Double R, point &p1, Poi    NT &AMP;P2) {point fp = Linecross (R, point (R.x + a.y-b.y, R.y + b.x-a.x), A, b);    Double rtol = R.dis (FP); Double RTOs = fp. Onseg (A, b)?    Rtol:min (R.dis (a), R.dis (b));Double Atob = A.dis (b);    Double fptoe = sqrt (R * r-rtol * rtol)/Atob;    if (RTOs > R-eps) return RTOs;    P1 = fp + (A-B) * FPTOE;    P2 = fp + (b-a) * FPTOE; return RTOs;}    Double Sectorarea (const point &r, const point &a, const point &b, Double R)//not greater than 180 degrees sector area, R->a->b counterclockwise {    Double A2 = SQR (r-a), B2 = SQR (r-b), C2 = SQR (A-B); Return R * R * ACOs ((A2 + b2-c2) * 0.5/SQRT (A2)/sqrt (B2)) * 0.5;} Double Tacia (const point &r, const point &a, const point &b, Double R)//triangleandcircleintersectarea, counterclockwise, R for    Center {Double Adis = R.dis (a), Bdis = R.dis (b);    if (Adis < R + EPS && Bdis < r + EPS) return R.cross (A, b) * 0.5;    Point TA, TB;    if (R.inline (A, B)) return 0.0;    Double RTOs = Linecrosscircle (A, B, R, R, TA, TB);    if (RTOs > R-eps) return Sectorarea (R, a, B, r);    if (Adis < R + EPS) return R.cross (A, TB) * 0.5 + Sectorarea (R, TB, B, R); if (Bdis < R + eps) return R.cross (TA, b) * 0.5 + SectorareA (R, a, TA, R); Return R.cross (TA, TB) * 0.5 + Sectorarea (R, A, TA, R) + Sectorarea (R, TB, B, r);} const int N = 505;    Point P[n], o;double SPICA (int N, point R, Double r)//simplepolygonintersectcirclearea{int i;    Double res = 0, if_clock_t;        for (i = 0; i < n; + + i) {if_clock_t = dcmp (R.cross (P[i], p[(i + 1)% n]));        if (if_clock_t < 0) Res-= Tacia (R, p[(i + 1)% n], P[i], R);    else res + = Tacia (R, P[i], p[(i + 1)% n], R); } return Fabs (res);}    Double R;int Main () {int bo = 0;        while (~SCANF ("%lf%lf%lf", &o.x, &o.y, &r)) {if (bo) printf ("\ n");        else Bo = 1;        Double x1, y1, x2, y2;        scanf ("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);        if (x1 > x2) Swap (x1, x2);        if (y1 > y2) swap (y1, y2);        P[0] = point (x1, y1);        P[1] = point (x1, y2);        P[2] = point (x2, y2);        P[3] = point (x2, y1);    printf ("%.10f\n", SPICA (4, O, R)); } return 0;}


ZOJ 2675 Little Mammoth (computational geometry)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.