Sanguosha
Time Limit: 3000/1000 MS (Java/others) memory limit: 65536/32768 K (Java/Others)
Total submission (s): 944 accepted submission (s): 520
Problem descriptionsanguosha has a singled version. Two players each select n heroes and start fighting. If a hero dies, the next follows. If one player's heroes are all dead, he loses.
There're restraints among heroes. For example, Yuji restricts Zhu Geliang, Luxun restricts daqiao, zhangjiao restricts machao, Weiyan restricts Xiaoqiao.
Today I play with friends. I know the heroes and the restraints. (If opponent's hero restraint my hero, my hero will be beaten, others my hero will beat opponent's hero)
Can you arrange my heroes 'order, No matter what order of opponent's heroes, so that I can win the game?
Inputthe first line is a number t (1 <= T <= 50), represents the number of case. The next t blocks follow each indicates a case.
The first line is n (3 <= n <= 6 ).
The second line has n names (shorter than 20 letter ).
The following n lines each contains a restraints. restraints are given as "K B1 B2... BK ", which means the opponent's hero restricts my hero b1, b2... BK. (0 <= k <= N)
Outputfor each case, first line output the number of case with "yes" or "no ". if yes, output the order of your heroes separate by a space. if there are more than one order, please output the one with minimum Lexicographic Order. (as shown in the sample output)
Sample worker huangyueying zhenji1 zhugeliang2 huangyueying zhenji2 zhugeliang worker yanliangwenchou Yujin xiaoqiao2 machao xiaoqiao2 yanliangwenchou yujin1 xiaoqiao0
Sample outputcase 1: nocase 2: yesmachao yanliangwenchou Xiaoqiao Yujin, in this way, no matter how the enemy gets out, you will win. If no output is made, the order of yes and your cards will be output. If there are multiple situations, the order with the smallest Lexicographic Order will be output. Idea: the maximum number of cards is 6. To minimize the Lexicographic Order, sort the cards in your hands in the Lexicographic Order, and use DFS to enumerate the order of cards in your hands, when determining the order of cards in your hands, enumerate the order of cards in your hands. If the order of cards in your hands is at this time, the winning situation is n !, Then the output order will be done, and the two DFS will be done. Code:
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <iostream> 5 #include <queue> 6 #include <vector> 7 #include <map> 8 using namespace std; 9 10 struct node{ 11 int id; 12 string s; 13 }a[10]; 14 map<string,int>ma; 15 16 string S[10]; 17 int n; 18 int visited1[10]; 19 int visited2[10]; 20 int cnt[10][10]; 21 int dep1[10]; 22 int dep[10]; 23 int f; 24 int kase; 25 int nn; 26 int maxh; 27 28 bool cmp(node a,node b){ 29 return a.s<b.s; 30 } 31 32 void dfs1(int k){ 33 int i, j; 34 if(f>=nn) return; 35 if(k>=n){ 36 int num1=n, num2=n; 37 i=j=0; 38 while(i<num1&&j<num2){ 39 if(cnt[dep1[j]][dep[i]]) i++; 40 else j++; 41 } 42 if(i<num1){ 43 f++; 44 } 45 // maxh=max(maxh,f); 46 if(f>=nn){ 47 printf("Case %d: Yes\n",kase); 48 cout<<S[0]; 49 for(i=1;i<n;i++) cout<<" "<<S[i]; 50 cout<<endl; 51 } 52 53 return; 54 55 } 56 for(i=0;i<n;i++){ 57 if(!visited2[i]){ 58 visited2[i]=1; 59 dep1[k]=i; 60 dfs1(k+1); 61 visited2[i]=0; 62 } 63 } 64 } 65 66 void dfs(int kase,int k){ 67 int i; 68 if(f>=nn) return; 69 if(k>=n){ 70 f=0; 71 dfs1(0); 72 return; 73 } 74 for(i=0;i<n;i++){ 75 if(!visited1[i]){ 76 visited1[i]=1; 77 S[k]=a[i].s; 78 dep[k]=a[i].id; 79 dfs(kase,k+1); 80 visited1[i]=0; 81 } 82 } 83 84 } 85 main() 86 { 87 int t, i, j, k;kase=1; 88 cin>>t; 89 string str; 90 while(t--){ 91 k=0; 92 memset(cnt,0,sizeof(cnt)); 93 memset(visited1,0,sizeof(visited1)); 94 memset(visited2,0,sizeof(visited2)); 95 ma.clear(); 96 scanf("%d",&n); 97 nn=1; 98 for(i=1;i<=n;i++) nn*=i; 99 for(i=0;i<n;i++) {100 cin>>a[i].s;101 a[i].id=i;102 ma[a[i].s]=k++;103 }104 sort(a,a+n,cmp);105 j=0;106 for(i=0;i<n;i++){107 scanf("%d",&k);108 while(k--)109 {110 cin>>str;111 cnt[j][ma[str]]=1;112 }113 j++;114 }115 f=0;116 maxh=-1;117 dfs(kase,0);118 if(f<nn){119 printf("Case %d: No\n",kase);120 }121 // printf("%d\n",maxh);122 kase++;123 }124 }
HDU 4068 DFS Enumeration