Hdu_1225
To expand the sum of the rectangle that covers K times, it is uva_11983. When we feel that we use the line segment tree to process the rectangle, we first need to mark which intervals are covered, and then we need to use the idea similar to DP, cover [I] [J] indicates that the node I on the online segment tree is within the specified range and covers the total length of the Line Segment for J times, at the same time, cover [I] [k] indicates the total length of a line segment that overwrites K times and exceeds K times, then, the status of cover [I] [J] is updated based on the status of the left and right sons.
# Include <stdio. h> # Include < String . H> # Include <Stdlib. h> # Include <Math. h> # Define Maxd 2010 # Define Zero 1e-8 Int N, m, CNT [4 * Maxd], K = 2 ; Double Ty [maxd], cover [ 4 * Maxd] [ 3 ]; Struct SEG { Double X, Y1, Y2; Int Col;} seg [maxd]; Int Cmpy ( Const Void * _ P, Const Void * _ Q ){ Double * P = ( Double *) _ P, * q = ( Double * ) _ Q; Return * P <* Q? - 1 : 1 ;} Int CMPS ( Const Void * _ P, Const Void * _ Q) {seg * P = (SEG *) _ p, * q = (SEG * ) _ Q; Return P-> x <q-> X? - 1 : 1 ;} Int DCMP ( Double X ){ Return FABS (x) <zero? 0 : (X < 0 ? - 1 : 1 );} Void Build ( Int Cur, Int X, Int Y ){ Int Mid = (x + y)> 1 , Ls = cur < 1 , RS = (cur < 1 ) |1 ; Memset (cover [cur], 0 , Sizeof (Cover [cur]); cover [cur] [ 0 ] = Ty [Y + 1 ]- Ty [X]; CNT [cur] = 0 ; If (X = Y) Return ; Build (LS, X, mid); Build (RS, mid +1 , Y );} Void Init (){ Int I, J, K; Double X1, x2, Y1, Y2; scanf ( " % D " ,& N ); For (I = 0 ; I <n; I ++ ) {J = I <1 , K = (I < 1 ) | 1 ; Scanf ( " % Lf " , & X1, & Y1, & X2 ,& Y2); seg [J]. x = X1, SEG [K]. x = X2; seg [J]. Y1 = Seg [K]. Y1 = Y1, SEG [J]. y2 = seg [K]. y2 = Y2; seg [J]. Col = 1 , SEG [K]. Col =- 1 ; Ty [J] = Y1, Ty [k] = Y2;} qsort (TY, n < 1 , Sizeof (TY [ 0 ]), Cmpy); m = (N < 1 )- 1 ; Build ( 1 , 0 , M- 1 );} Void Update (Int Cur, Int X, Int Y ){ Int Ls = cur < 1 , RS = (cur < 1 ) | 1 ; Memset (cover [cur], 0 , Sizeof (Cover [cur]); If (CNT [cur]> = K) cover [cur] [k] = Ty [Y + 1 ]- Ty [x]; Else If (X = Y) cover [cur] [CNT [cur] = Ty [Y + 1 ]- Ty [x]; Else { Int I; For (I = CNT [cur]; I <= K; I ++ ) Cover [cur] [I] + = Cover [ls] [I-CNT [cur] + cover [RS] [I-CNT [cur]; For (I = k-CNT [cur] + 1 ; I <= K; I ++ ) Cover [cur] [k] + = Cover [ls] [I] + Cover [RS] [I] ;}} Void Refresh ( Int Cur, Int X, Int Y, Int S, Int T, Int C ){ Int Mid = (x + y)> 1 , Ls = cur < 1 , RS = (cur < 1 ) | 1 ; If (X> = S & Y <= T) {CNT [cur] + = C; Update (cur, x, y ); Return ;} If (Mid> =S) Refresh (LS, X, mid, S, T, C ); If (Mid + 1 <= T) Refresh (RS, mid + 1 , Y, S, T, C); Update (cur, x, y );} Int BS ( Double X ){ Int Min = 0 , Max = m + 1 , Mid; For (;) {Mid = (Min + max)> 1 ; If (Mid = Min) Break ; If (DCMP (TY [Mid]-x) <= 0 ) Min = Mid; Else Max = Mid ;} Return Mid ;} Void Solve (){ Int I, J, K; Double Ans = 0 ; Qsort (SEG, n < 1 , Sizeof (SEG [ 0 ]), CMPs); seg [n < 1 ]. X = seg [(n <1 )- 1 ]. X; For (I = 0 ; I <(n < 1 ); I ++ ) {J = BS (SEG [I]. Y1), k = BS (SEG [I]. Y2 ); If (J < K) Refresh ( 1 , 0 , M- 1 , J, k-1 , SEG [I]. col); ans + = Cover [ 1 ] [K] * (SEG [I + 1 ]. X- SEG [I]. X);} printf ( " %. 2f \ n " , ANS );} Int Main (){ Int T; scanf ( " % D " ,& T ); While (T -- ) {Init (); solve ();} Return 0 ;}