[Jia Liwei university mathematics magazine] 058th Lanzhou University 2011 mathematical analysis postgraduate exam reference

Source: Internet
Author: User

$ \ BF abstract $: This article provides a reference for the 2011 mathematical analysis postgraduate exam of Lanzhou University.

 

$ \ BF keywords $: Lanzhou University; mathematical analysis; postgraduate exam

 

1 calculation question ($6 \ times 10' = 60' $ ).

(1) limit $ \ Bex \ lim _ {x \ to 0} \ frac {e ^ {X-\ SiN x}-e ^ \ frac {x ^ 3} {6}} {x ^ 5} \ EEx $

Answer: $ \ Bex \ mbox {Original limit} & =& \ lim _ {x \ to 0} \ frac {e ^ \ Xi \ sex {X-\ SiN x-\ frac {x ^ 3} {6 }}{ x ^ 5} \ quad \ sex {\ Xi \ mbox {at} 0, between x \ mbox {}\\\&\lim _ {x \ to 0 }\frac {-x ^ 5/120 + O (x ^ 7 )} {x ^ 5 }\\&=&-\ frac {1} {120 }. \ EEx $

 

(2) set $ x \ geq 0 $, $ \ DPS {f (x) = \ int_0 ^ X (u-u ^ 2) \ sin U \ RD u} $, calculates the maximum value of $ f (x) $.

A: from $ \ Bex f' (x) = (X-x ^ 2) \ sin ^ 2x \ left \ {\ BA {ll}> 0, & 0 <x <1 \ <0, & x> 0 \ EA \ right. \ EEx $ $ F $ the maximum value on $ x \ geq 0 $ is $ \ Bex F (1) = \ int_0 ^ 1 (u-u ^ 2) \ sin ^ 2u \ RD u =-2 \ cos 1-\ SIN 1. \ EEx $

 

(3) set $ \ Omega = [0, 1] ^ 3 \ subset \ BBR ^ 3 $, $ p $ to a real number, determine generalized points $ \ Bex \ iint _ \ Omega \ frac {\ RD x \ rd y \ RD z} {\ sex {x ^ 2 + y ^ 2 + Z ^ 2} ^ \ frac {p} {2 }}\ EEx $.

Answer: you have noticed that $ \ B _1 \ subset \ Omega \ subset B _ {\ SQRT {3 }}\ quad \ sex {B _r = \ sed {(x, y, z ); \ x ^ 2 + y ^ 2 + Z ^ 3 \ Leq R ^ 2 }}\ EEx $ we know the convergence and divergence of the original generalized points and $ \ Bex \ iint _ {B _1} \ frac {\ RD x \ RD Y \ RD z} {\ sex {x ^ 2 + y ^ 2 + Z ^ 2} ^ \ frac {p} {2 }}=\ int_0 ^ 1 \ frac {4 \ Pi R ^ 2} {R ^ p} \ RD r = 4 \ pi \ int_0 ^ 1 \ frac {1} {r ^ {P-2 }}\ RD r \ EEx $ same. therefore, when $ P <3 $, the original integral converges. When $ p \ geq 3 $, the original integral divergence.

 

(4) evaluate the power series $ \ DPS {\ sum _ {n = 0} ^ \ infty \ sex {\ frac {1} {3 ^ {n + 1}-(-2) the Convergence domains and functions of ^ {n + 1} x ^ n} $.

Answer: $ \ Bex \ mbox {Original Series} & =& \ frac {1} {3} \ sum _ {n = 0} ^ \ infty \ sex {\ frac {x} {3 }}^ N-(-2) \ sum _ {n = 0} ^ \ infty (-2x) ^ n \ quad \ sex {\ sev {x} <3 \ mbox {And} \ sev {2x} <1 }\\\\\=& \ frac {1} {3} \ frac {1} {1-\ frac {x} {3} + 2 \ frac {1} {1 + 2x} \ quad \ sex {\ sev {x} <\ frac {1} {2 }}\\\&\frac {1} {3-x} + \ frac {2} {1 + 2x} \ quad \ sex {\ sev {x} <\ frac {1} {2 }}. \ EEx $

 

(5) calculate $ \ DPS {\ int _ {()} ^ )} \ frac {x \ rd x + Y \ RD y }{\ SQRT {x ^ 2 + y ^ 2 }}$, path along the curve $ \ DPS {y ^ 4 = 2x ^ 2-2 (x> 0, Y> 0)} $.

Answer: $ \ Bex \ mbox {original second curve points }=\ int _ {()} ^ )} \ RD \ SQRT {x ^ 2 + y ^ 2 }=\ SQRT {x ^ 2 + y ^ 2} | ^ )} = \ SQRT {14}-1. \ EEx $

 

(6) calculate $ \ DPS {\ iint _ {\ varsigma} Z \ RD x \ RD y + x \ rd y \ rd z + Y \ RD x \ RD z} $, $ \ varsigma $ is the cylindrical surface $ x ^ 2 + y ^ 2 = 1 $ is flat $ z = 0 $ and $ z = 3 $ is the outer side of the cut part.

Answer: $ \ Bex \ mbox {original second-Type Curved Surface points} & =& \ iint _ {x ^ 2 + y ^ 2 \ Leq 1 \ atop 0 \ Leq Z \ Leq 3} \ SEZ {\ frac {\ P z} + \ frac {\ P x} + \ frac {\ P (-y )} {\ p y }}\ RD x \ rd y \ rd z \\& &-\ iint _ {x ^ 2 + y ^ 2 \ Leq 1 \ atop z = 3} Z \ RD x \ rd y \ & = & 3 \ pi-3 \ pi \ & = & 0. \ EEx $

 

2 answer questions ($3 \ times 6' = 18' $ ).

(1) If $ f (x) $ is defined near $ x = x_0 $ and $ \ Delta> 0 $ and constant $ \ Alpha, L $, set $ \ Bex \ sev {f (x)-f (x_0)} for any $ x \ In (x_0-\ delta, x_0 + \ delta) $ )} \ Leq L \ sev {x-x_0} ^ \ Alpha, \ EEx $ then $ f (x) $ can be exported at $ x_0 $.

Answer: Error! For example, function $ f (x) =\ SQRT {x} $ where $ x_0 = 0 $ is suitable for the condition $ \ DPS {\ alpha = \ frac {1} {2 }$, however, it cannot be exported at the origin.

 

(2) If the binary function $ f (x, y) $ is defined in a neighborhood of $ (x_0, y_0) $ and $ \ DPS {\ lim _ {(X, y) \ To (x_0, y_0)} f (x, y)} $ exists, then $ \ DPS {\ lim _ {Y \ To y_0} \ lim _ {x \ To x_0} f (x, y)} $ must exist.

Answer: Error! For example, if the function $ \ DPS {f (x, y) = Y \ sin \ frac {1} {x }}$ is at $ (0, 0) $, the limit is fixed, but the limit does not exist for multiple times (first $ x $ and then $ y $.

 

(3) binary functions $ f (x, y) $ in $ (x_0, y_0) $ micro, then the partial derivative of $ f (x, y) $ is in $ (x_0, y_0) $ points are continuous.

Answer: Error! For example, the function $ \ Bex f (x, y) =\left \{\ BA {ll} x ^ 2 \ sin \ frac {1} {x }, & X \ NEQ 0 \ 0, & x = 0 \ EA \ right. \ EEx $ is the inverse example.

3 ($ 15' $) known $ x \ in [-\ Pi, \ Pi] $, proof: $ \ DPS {\ sev {\ sin \ frac {x} {2 }}\ Leq \ frac {\ sev {x }}{\ PI }}$.

Proof: $ \ Bex \ sev {\ sin \ frac {x} {2 }=\ sin \ frac {\ sev {x }}{ 2} \ geq \ frac {2} {\ PI} \ cdot \ frac {\ sev {x }}{ 2 }=\ frac {\ sev {x }}{\ PI }. \ EEx $

 

4 ($ 15' $) proof: Symbolic Functions $ \ Bex \ mathrm {SGN} (x) =\left \ {\ BA {lll}-1, & x <0 \ 0, & x = 0 \ 1, & x> 0 \ EA \ right. \ EEx $ on $ [-] $ is the product of Riann, but the original function does not exist on $ [-] $.

Proof: $ \ mathrm {SGN} (\ cdot) $ only has two skip intervals, and Riann can accumulate. Because of this, it does not have the original function, after all, the function allows a maximum of the second type of interruptions (refer to the 020th Lanzhou University 2005 mathematical analysis postgraduate exam reference ).

 

5 ($ 15' $) set $ f (x) $ to the real function on $ \ BBR $, $ \ DPS {f (x, y) =\ frac {f (y-x)} {2x }$ and $ \ DPS {f (1, Y) = \ frac {1} {2} y ^ 2-y + 5} $. take $ x_0> 0 $ and define $ \ Bex X _ {n + 1} = f (X_n, 2x_n) \ quad \ sex {n \ geq 0 }. \ EEx $ proof: $ \ DPS {\ lim _ {n \ To \ infty} X_n} $ exists and its value is obtained.

Proof: By question, $ \ Bex F (1, y) = \ frac {f (Y-1 )} {2 }=\ frac {1} {2} y ^ 2-y + 5, \ EEx $ \ Bex F (Y-1) = y ^ 2-2y + 10 = (Y-1) ^ 2 + 9, \ EEx $ \ Bex f (x) = x ^ 2 + 9, \ EEx $ and $ \ bee \ label {lz115: EQ} X _ {n + 1} = f (X_n, 2x_n) = \ frac {f (x_n )} {2x_n }=\ frac {x_n ^ 2 + 9} {2x_n }. \ EEE $

(1) $ X _ {n + 1} \ geq 3 $ (mean inequality, $ n \ geq 0 $ );

(2) $ \ DPS {\ frac {X _ {n + 1 }}{ x_n }=\ frac {1} {2} + \ frac {9} {2x_n ^ 2} \ Leq 1} $ ($ n \ geq 1 $) zhi \ footnote {monotonic bounded theorem .} $ \ DPS {\ lim _ {n \ To \ infty} x_n = A} $ exists. on \ eqref {lz115: in EQ}, $ n \ To \ infty $ \ Bex a =\frac {A ^ 2 + 9} {2a} \ rA A = 3. \ EEx $

 

6 ($ 15' $) set $ f (x, y) $ in the region $ d \ subset \ BBR ^ 2 $, each independent variable $ x $ and $ y $ are continuous, and when $ x $ is fixed, $ y $ is monotonous. proof: $ F $ is a binary continuous function on area $ d $.

Proof: Refer to 018th Lanzhou University 2007 mathematical analysis postgraduate exam reference answers.

 

7 ($ 12' $) sets the Function Column $ \ sed {f_n (x) }_{ n = 1} ^ \ infty $ to be continuous on $ [] $, it can be imported within $ () $ and $ \ sed {f_n (x) }_{ n = 1} ^ \ infty $ is uniformly bounded on $ [] $, $ \ DPS {\ sed {f_n' (x) }_{ n = 1} ^ \ infty} $ is uniformly bounded on $ (0, 1) $. proof: The Function Column $ \ sed {f_n (x) }_{ n = 1} ^ \ infty $ has a child column with consistent convergence.

Proof: only after \ footnote {certificate \ eqref {lz117: eq} is verified, $ n_l \ To \ infty $ can be obtained .} $ \ exists \ sed {n_k} \ subset \ sed {n} $ to make $ \ bee \ label {lz117: eq} \ forall \ ve> 0, \ exists \ n> 0, \ s. t. \ left. \ BA {RR} n_k, n_k \ geq n \ x \ in [0, 1] \ EA \ right \} \ Ra \ sev {F _ {n_k} (X) -F _ {n_l} (x)} \ Leq \ ve. \ EEE $ this can be completed in three steps.

(1) first \ footnote {use $ \ Bex \ sev {f_n (x)-f_n (x')} \ Leq \ sup _ {\ Xi \ In (0, 1 )} \ sev {f_n' (\ xi)} \ cdot \ sev {X-x '}. \ EEx $} description $ \ sed {f_n (x)} $, that is, $ \ Bex \ forall \ ve> 0, \ exists \ Delta> 0, \ left. \ BA {RR} \ sev {X-x'} \ Leq \ Delta \ n \ In \ BBN \ EA \ right \} \ Ra \ sev {f_n (X) -f_n (x')} \ Leq \ frac {\ ve} {3 }. \ EEx $

(2) followed by \ footnote {multiple applications of Weierstrass clustering theorem .} description: $ \ exists \ sed {n_k} \ subset \ sed {n} $ enable $ \ sed {F _ {n_k} (x_j )} _ {k = 1} ^ \ infty $ convergence. here, $ x_j = J \ Delta \ in [0, 1] $ is a finite number of $ [0, 1] $. therefore, for any of the above $ \ ve> 0 $, $ \ Bex \ exists \ n> 0, \ s. t. \ left. \ BA {RR} n_k, n_l \ geq n \ forall \ x_j \ EA \ right \} \ Ra \ sev {F _ {n_k} (x_j) -F _ {n_l} (x_j)} \ Leq \ frac {\ ve} {3 }. \ EEx $

(3) final description \ eqref {lz117: eq }:$ $ \ Bex x \ in [0, 1] \ Ra \ exists \ X_j, \ s. t. \ sev {x-x_j} \ Leq \ delta, \ EEx $ and $ \ Bex \ sev {F _ {n_k} (X) -F _ {n_l} (x)} & \ Leq & \ sev {F _ {n_k} (x)-f _ {n_k} (x_j )} + \ sev {F _ {n_k} (x_j)-f _ {n_l} (x_j) }\\& & + \ sev {F _ {n_l} (x_j) -F _ {n_l} (x) }\\& \ Leq & \ ve. \ EEx $

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.