[Jia Liwei university mathematics magazine] No. 245th Xiamen University 2011 mathematical analysis postgraduate exam reference

Source: Internet
Author: User

1. multiple choice questions (This question includes five full scores of 30 points and six points for each question)

(1) function $ Y = f (x) $ has a continuous second derivative in a neighborhood of $ x_0 $, satisfying $ f' (x_0) = 0 $, and $ f'' (x_0) <0 $, then ()

A. $ f (x) $ obtain the maximum value at the Point $ x_0 $;

B. $ f (x) $ obtain the minimum value at $ x_0 $;

C. $ (x_0, F (x_0) $ is the inflection point of the curve $ Y = f (x) $;

D. $ f (x) $ monotonically decreases in a neighborhood of $ x_0 $.

Proof: Actually, $ \ Bex f (x) = f (x_0) + f' (x_0) (x-x_0) + \ frac {f'' (\ xi_x )} {2} (x-x_0) ^ 2, \ quad x \ In U (x_0 ). \ EEx $

 

(2) function $ f (x) = \ ln x-x $ the number of zeros in the range $ (0, \ infty) $ is ().

A. 0;

B. 1;

C. 2;

D. Not sure.

Proof: by $ \ Bex f' (x) = \ frac {1} {x}-1 \ sedd {\ BA {ll}> 0, & 0 <x <1, \ <0, & x> 1 \ EA} \ EEx $ Zhi $ \ DPS {\ Max _ {x \ In (0, \ infty)} f (x) =-1} $.

 

(3) When $ x \ to 0 $ is known, the functions $ e ^ {\ SiN x}-e ^ x $ and $ x ^ N $ are of the same order, then $ n = (c) $.

A. 1;

B. 2;

C. 3;

D. 4.

Proof: by $ \ Bex e ^ {\ SiN x}-e ^ x = e ^ \ XI (\ SiN x-x) \ sim-\ frac {x ^ 3} {6} \ Quad (x \ to 0) \ EEx $.

 

(4) which of the following statements is true? (B ).

A. if $ f (x) $ on $ [a, B] $, and there is an original function $ f (x) $, then $ \ Bex \ SEZ {\ int_0 ^ x F (t) \ RD t} '= f (x); \ EEx $

B. $ f (x) $ Riann product on $ [a, B] $ | f (x) | $ product on $ [a, B] $;

C. if $ f ^ 2 (x) $ can accumulate in Riann on $ [a, B] $, then $ | f (x) | $ must be in $ [, b] $ on Riann product;

D. if $ | f (x) | $ Riann product on $ [a, B] $, then $ f (x) $ in $ [, b] $ ON THE Riann product.

Answer: Use the Equivalent Definition of the Riann integral directly (the one with an amplitude ).

 

(5) set $ f (x) $ to meet $ f'' (x)> 0 $ in $ (-) $, and $ | f (x) | \ Leq x ^ 4 $, $ \ DPS {I = \ int _ {-1} ^ 1 F (x) \ RD x} $, then (B) is required ).

A. $ I = 0 $;

B. $ I> 0 $;

C. $ I <0 $;

D. Not sure.

Proof: by $ \ beex \ Bea f (x) & = \ int_0 ^ x f' (t) \ RD t \\\<\int_0 ^ x \ SEZ {f' (0) + \ int_0 ^ t f' (s) \ RD s} \ RD t \ & = f' (0) x + \ int_0 ^ x \ int_0 ^ t f' (s) \ RD s \ RD t \ & = f' (0) x + \ int_0 ^ x (x-S) f' (s) \ RD s \ EEA \ eeex $ Zhi $ \ beex \ Bea \ int _ {-1} ^ 1 F (x) \ RD x <=\ int _ {-1} ^ 1 (X-S) f'' (s) \ RD s \ RD x \\\\\int _ {-1} ^ 0 \ int_x ^ 0 (S-x) f'' (s) \ RD s \ RD x + \ int_0 ^ 1 \ int_0 ^ x (x-S) f'' (s) \ RD s \ RD x \ &> 0. \ EEA \ eeex $

 

2 ($10 '$) $ f (x) $ on $ [0, 1] $ top second-order bootable with $ F (0) = F (1) = 0 $, $ \ DPS {\ min _ {x \ in [0, 1]} f (x) =-1} $. proof: $ \ Xi \ In (0, 1) $ exists, making $ f'' (\ xi) \ geq 8 $.

Proof: Set $ x_0 \ in [0, 1] $ to make $ \ DPS {f (x_0) = \ min _ {x \ in [0, 1]} f (x) =-1} $, then $ f' (x_0) = 0 $, instead of Taylor, $ \ Bex 0 = f (0) =-1 + \ frac {f'' (\ xi_1)} {2} x_0 ^ 2, \ quad 0 = F (1) =-1 + \ frac {f'' (\ xi_2)} {2} () ^ 2. \ EEx $ therefore, if $ \ DPS {0 \ Leq x_0 \ Leq \ frac {1} {2 }}$, then $ \ xi = \ xi_1 $; if $ \ DPS {\ frac {1} {2} \ Leq x_0 \ Leq 1 }1, $ \ xi = \ xi_2 $.

 

3 ($ 10' $) set the function $ f \ in C [0, 1] $, which proves: $ \ Bex \ lim _ {\ Lambda \ to + \ infty} \ int_0 ^ \ Lambda f \ sex {\ frac {x }{\ Lambda }}\ frac {1} {1 + x ^ 2} \ RD x = \ frac {\ PI} {2} f (0 ). \ EEx $

Proof: $ \ beex \ Bea \ lim _ {\ Lambda \ to + \ infty} \ int_0 ^ \ Lambda f \ sex {\ frac {x} {\ Lambda} \ frac {1} {1 + x ^ 2} \ rd x & =\ LiM _ {\ Lambda \ to + \ infty} \ int_0 ^ 1 \ frac {\ Lambda f (x )} {1 + \ Lambda ^ 2t ^ 2} \ RD t \\\&=\ LiM _ {\ Lambda \ to + \ infty} \ int_0 ^ 1 \ frac {\ Lambda [F (t) -F (0)]} {1 + \ Lambda ^ 2t ^ 2} \ rd t + \ frac {\ PI} {2} f (0) \ & =\ LiM _ {\ Lambda \ to + \ infty} \ int_0 ^ \ Delta + \ int _ \ Delta ^ 1 \ frac {\ Lambda [F (t) -F (0)]} {1 + \ Lambda ^ 2t ^ 2} \ rd t + \ frac {\ PI} {2} f (0) \ & =\ frac {\ PI} {2} f (0 ). \ EEA \ eeex $ the last step is because the optional $ \ Delta $ makes $ \ int_0 ^ \ Delta \ cdots $ sufficiently small; then the $ \ Delta $, when $ \ Lambda $ is sufficiently large, $ \ int _ \ Delta ^ 1 \ cdots \ Leq \ frac {\ Lambda} {1 + \ Lambda ^ 2 \ Delta ^ 2} \ cdots $ small enough.

 

4 ($ 15' $) set $ f (x) $ to be continuous on $ [] $. proof of $ \ forall \ t> 0 $, $ \ Bex \ SEZ {\ int_0 ^ 1 \ frac {f (x )} {t ^ 2 + x ^ 2} \ RD x} ^ 2 \ Leq \ frac {\ PI} {2 t} \ int_0 ^ 1 \ frac {f ^ 2 (x)} {t ^ 2 + x ^ 2} \ rd x. \ EEx $

Proof: It is derived from the Gini-Schwarz inequality, $ \ beex \ Bea \ EEA \ eeex $ \ beex \ Bea \ SEZ {\ int_0 ^ 1 \ frac {f (x )} {t ^ 2 + x ^ 2} \ RD x} ^ 2 & =\ SEZ {\ int_0 ^ 1 \ frac {1} {\ SQRT {t ^ 2 + x ^ 2 }}\ cdot \ frac {f (x )} {\ SQRT {t ^ 2 + x ^ 2 }}\ RD x} ^ 2 \ & \ Leq \ int_0 ^ 1 \ frac {1} {t ^ 2 + x ^ 2} \ RD x \ cdot \ int_0 ^ 1 \ frac {f ^ 2 (x )} {t ^ 2 + x ^ 2} \ RD x \\\\=\ frac {1 }{t }\ arctan \ frac {1 }{ t} \ cdot \ int_0 ^ 1 \ frac {f ^ 2 (x )} {t ^ 2 + x ^ 2} \ RD x \ & \ Leq \ frac {\ PI} {2 t} \ int_0 ^ 1 \ frac {f ^ 2 (x)} {t ^ 2 + x ^ 2} \ rd x. \ EEA \ eeex $

 

5 ($ 15' $) set $0 <\ Lambda <1 $, $ \ DPS {\ lim _ {n \ To \ infty} a_n = A }$, verify: $ \ Bex \ lim _ {n \ To \ infty} \ sex {\ Lambda ^ na_0 + \ Lambda ^ {n-1} a_1 + \ cdots + \ Lambda A _ {n-1} + a_n }=\ frac {A} {1-\ Lambda }. \ EEx $

Proof: write $ \ lim \ frac {A} {1-\ Lambda }=\ LiM _ {n \ To \ infty} (1 + \ Lambda + \ cdots + \ Lambda ^ {n-1} + \ Lambda ^ N) A \ EEx $.

 

6 ($ 20' $) set $ f_n (x) = E ^ {-NX ^ 2} \ Cos x $, $ x \ in [-] $, $ N $ is a positive integer. proof:

(1) $ f_n $ inconsistent convergence on $ [-1, 1] $;

(2) $ \ DPS {\ lim _ {n \ To \ infty} \ int _ {-1} ^ 1 f_n (X) \ RD x = \ int _ {-1} ^ 1 \ lim _ {n \ To \ infty} f_n (x) \ RD x} $.

Proof:

(1) by $ \ Bex e ^ {-n \ cdot \ sex {\ frac {1} {\ SQRT {n }}^ 2} \ cos \ frac {1 }{\ SQRT {n }}>\ frac {1} {2E} \ Quad (n \ Gg 1) \ EEx $ conclusion.

(2) by $ \ Bex \ sev {\ int_0 ^ 1 f_n (X) \ RD x} \ Leq \ int_0 ^ 1 e ^ {-NX ^ 2} \ RD x \ Leq \ int_0 ^ \ Delta \ RD x + \ int _ \ Delta ^ 1 E ^ {-n \ Delta ^ 2} \ RD x \ to 0 \ quad \ sex (n \ To \ infty) \ EEx $ conclusion.

 

Note: This indicates that consistent convergence is only a sufficient, not a necessary condition for the order of the limit and the point exchange.

 

7 ($ 10' $) proves that continuous functions in the finite closed interval can obtain the minimum value.

Proof: we must first prove bounded, and then obtain the minimum value. The Weierstrass clustering theorem is used for both cases.

 

8 ($ 15' $) set $ f (x) $ to be micro at $ A $, and $ F (a) \ NEQ 0 $, limit $ \ DPS {\ lim _ {n \ To \ infty} \ SEZ {\ frac {f \ sex {A + \ frac {1} {n }}{ F ()}} ^ n} $.

A: Set $ F (a) to 0 $, and $ \ beex \ Bea \ lim _ {n \ To \ infty} \ SEZ {\ frac {f \ sex {A + \ frac {1} {n }}}{ f ()}} ^ N & =\ exp \ SEZ {\ lim _ {n \ To \ infty} \ frac {\ ln f \ sex {A + \ frac {1} {n }}- \ ln f ()} {1/N }}\\\&=\ exp \ SEZ {\ lim _ {x \ to 0 }\frac {\ ln f (a + x) -\ ln f ()} {x }}\\\=\ exp \ SEZ {\ lim _ {x \ to 0} \ frac {f' (a + x )} {f (a + x) }\\\& = e ^ \ frac {f' (a)} {f ()}. \ EEA \ eeex $

 

9 ($ 15' $) calculate $ \ DPS {\ iint _ {[0, \ Pi] \ Times [0, 1]} Y \ sin (xy) \ RD x \ RD y} $.

Answer: You can get the answer $1 $ directly as the accumulated credits.

 

10 ($ 10' $) calculate $ \ DPS {\ lim _ {n \ To \ infty} \ sum _ {k = n ^ 2} ^ {(n + 1) ^ 2} \ frac {1} {\ SQRT {k }}$.

Answer: by $ \ Bex \ frac {1} {n + 1} [(n + 1) ^ 2-N ^ 2 + 1] \ Leq \ sum _ {k = n ^ 2} ^ {(n + 1) ^ 2} \ frac {1} {\ SQRT {k }}\ Leq \ frac {1} {n} [(n + 1) ^ 2-N ^ 2 + 1] \ EEx $ knows that the original limit is equal to $2 $.

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.