[Journal of mathematics at home University] 308th questions about the Postgraduate Entrance Exam of Huazhong Normal University in 2006

Source: Internet
Author: User

 

1. ($ 14' $) calculate $ N $ level determining factor $ \ Bex D_n = \ sev {\ BA {CCCCC} x_1 + a_1 ^ 2 & a_1a_2 & a_1a_3 & \ cdots & a_1a_n \ a_2a_1 & X_2 + a_2 ^ 2 & a_2a_3 & \ cdots & a_2a_n \ a_3a_1 & a_3a_2 & X_3 + A_3 ^ 2 & \ cdots & a_3a_n \ vdots & \ ddots & \ vdots \ a_na_1 & a_na_2 & a_na_3 & \ cdots & x_n + a_n ^ 2 \ EA }, \ mbox {where} x_1x_2 \ cdots x_n \ NEQ 0. \ EEx $

 

Answer: $ \ beex \ Bea D_n & =\ sev {\ BA {CCCCC} 1 & A_1 & A_2 & \ cdots & a_n \ 0 & x_1 + a_1 ^ 2 & a_1a_2 &\ cdots & a_1a_n \ 0 & a_2a_1 & X_2 + A_2 ^ 2 & \ cdots & a_2a_n \ vdots & \ ddots & \ vdots \ 0 & a_na_1 & a_na_2 & \ cdots & x_n + a_n ^ 2 \ EA }\\\\\sev {\ba {CCCCC} 1 & A_1 & A_2 & \ cdots & a_n \-A_1 & X_1 & \ cdots & 0 \-A_2 & 0 & X_2 & \ cdots & 0 \ vdots & \ ddots & \ vdots \-a_n & 0 & 0 & \ cdots & x_n \ EA} \\\\=\ sev {\ BA {CCCCC} 1 + \ sum _ {I = 1} ^ n \ frac {a_ I ^ 2} {X_ I} & A_1 & A_2 & \ cdots & a_n \ 0 & X_1 & 0 & \ cdots & 0 \ 0 & 0 & X_2 & \ cdots & 0 \ \ vdots & \ ddots & \ vdots \ 0 & 0 & \ cdots & x_n \ EA} \ & = 1 + \ sum _{ I = 1} ^ n \ frac {a_ I ^ 2} {X_ I }. \ EEA \ eeex $

 

2. ($ 20' $) set $ a_ I = (A _ {I1}, A _ {I2}, \ cdots, A _ {In}) $, $ I = 1, 2, \ cdots, r$ and $ \ al_1, \ Al_2, \ cdots, \ al_r $ Linear Independence, $ \ Beta = (B _1, B _2, \ cdots, B _n) $. proof: the necessary conditions for linear correlation between $ \ al_1, \ Al_2, \ cdots, \ al_r, and \ beta $ are: linear Equations $ AX = 0 $ (here $ A = (A _ {IJ}) $) are solutions of equations $ \ Beta X = 0 $.

 

Proof: the solution space for the linear equations $ AX = 0 $ is $ v_1 $, the solution space for Linear Equations $ \ Bex \ sex {\ BA {CC} A \ beta \ EA} x = 0 \ EEx $ is $ V_2 $, then $ \ Bex V_2 \ subset v_1, \ quad \ dim v_1 = N-\ rank (), \ quad \ dim V_2 = N-\ rank \ sex {\ BA {CC} A \ beta \ EA }. \ EEx $ then $ \ beex \ Bea v_1 = V_2 & \ LRA \ rank () = \ rank \ sex {\ BA {CC} A \ beta \ EA} \ & \ LRA \ al_1, \ Al_2, \ cdots, \ al_r, \ beta \ mbox {linear correlation }. \ EEA \ eeex $

 

3. ($24 '$) set $ \ BBR $ to a real number field, $ V $ linear equations $ \ Bex \ BA {rrrrrrrrrrl} 2x_1 & + & 4x_2 &-& 2x_3 & + & 4x_4 &-& 7x_5 & = & 0 \ 2x_1 & & + & 2x_3 &-& 4x_4 &-& x_5 & = & 0 \ 3x_1 &-& X_2 & + & 4x_3 & + & 4x_4 &-& 4x_5 & = & 0 \ 4x_1 &-& 2x_2 & + & 6x_3 & + & 3x_4 &-4x_5 & = & 0 \ EA \ EEx $ is a set of all solutions.

(1) prove that $ V $ is the sub-space of $ \ BBR ^ 5 $ (space composed of column vectors;

(2) Calculate the basis and dimension of $ V $;

(3) Calculate the base and dimension of the orthogonal complement $ V ^ \ perp $ for $ V $ ($ \ BBR ^ 5 $ Inner Product $ (\ Al, \ beta) = \ Al ^ t \ beta $ ).

 

Answer:

(1) apparently.

(2) by $ \ Bex a =\sex {\ BA {CCCCC} 2 & 4 &-2 & 4 &-7 \ 2 & 0 & 2 &-4 &-1 \ \ 3 &-1 & 4 & 4 &-4 \ 4 &-2 & 6 & 3 &-4 \ EA} \ RRA \ sex {\ BA {CCCCC} 6 & 0 & 6 & 0 &-7 \ 0 & 6 &-6 & 0 &-5 \ 0 & 0 & 3 &-1 \ 0 & 0 & 0 & 0 & 0 & 0 \ EA} \ EEx $ a group of optional $ V $ bases is $ \ Bex \ sex {\ BA {CCCCC}-1 \ 1 \ 1 \ \ 0 \ 0 \ EA }, \ quad \ sex {\ BA {CCCCC} 7 \ 5 \ 0 \ 2 \ 6 \ EA }, \ EEx $ while $ V $ has a dimension of $2 $.

(3) $ \ dim V ^ \ perp = 3 $. set $ Y = (y_1, \ cdots, y_5) ^ t \ In V ^ \ perp $, then $ \ Bex \ BA {rrrrrrrrl}-Y_1 & + & Y_2 & + & y_3 & = & 0, \ 7y_1 & + & 5y_2 & + & 2y_4 & + & 6y_5 & = & 0. \ EA \ EEx $ a group of keys for $ V ^ \ perp $ \ Bex \ sex {\ BA {CCCCC} 6 \ 0 \ 6 \ 0 \ \-7 \ EA }, \ quad \ sex {\ BA {CCCCC} 0 \-6 \ 6 \ 0 \ 5 \ EA }, \ quad \ sex {\ BA {CCCCC} 0 \ 0 \ 0 \ 3 \-1 \ EA }. \ EEx $

 

4. ($ 32' $) set $ \ BBP $ to a number field, $ \ Bex v =\sed {f (x) \ In \ BBP [X]; \ f (x) = 0 \ mbox {or} \ P (f (x) <n }. \ EEx $ for any $ f9x) = A _ {n-1} x ^ {n-1} + \ cdots + a_1x + a_0 \ In V, $ rules $ \ Bex \ SCRA: \ quad f (x) \ mapsto A _ {n-1} x ^ {n-1 }. \ EEx $

(1) prove that $ \ SCRA $ is a linear transformation of $ V $;

(2) Evaluate the matrix $ \ SCRA $ under base $ X {n-1}, x ^ {N-2}, \ cdots, X, 1 $;

(3) calculate a group of cores $ \ SCRA ^ {-1} (0) $ for $ \ SCRA $;

(4) Evaluate all feature values and feature vectors of $ \ SCRA $.

 

Answer:

(1) apparently.

(2) $ \ Bex \ SCRA (x ^ {n-1}, x ^ {N-2}, \ cdots, 1) = (x ^ {n-1 }, x ^ {N-2}, \ cdots, 1) \ diag (, \ cdots, 0 ). \ EEx $

(3) $ \ SCRA ^ {-1} (0) = \ span \ sed {x ^ {N-2}, \ cdots, 1} $.

(4) The feature value of $ \ SCRA $ is $1 $ (single weight), $0 $ ($ n-1 $ weight ), the corresponding feature vectors are $ \ Bex x ^ {n-1}; \ quad x ^ {N-2}, \ cdots, 1. \ EEx $

 

5. ($ 20' $) set $ \ BBP $ to a number field, $ a, B \ In \ BBP ^ {n \ times N }$, $ c = AB-BA $, and $ BC = CB $. proof:

(1) For a natural number greater than $1 $, there are $ AB ^ K-B ^ Ka = kb ^ {k-1} C $;

(2) set $ F (\ lm) $ to the feature polynomial of $ B $, $ f' (\ lm) $ to the derivative of $ F (\ lm) $, then $ f' (B) C = 0 $.

 

Proof:

(1) Conclusion $ k \ geq 1 $ is true. it is proved by mathematical induction. when $ k = 1 $, the conclusion is obvious. if the conclusion is true when $ k = N $, then when $ k = n + 1 $, $ \ beex \ Bea AB ^ {n + 1}-B ^ {n + 1} A & = (AB ^ N) B-B (B ^ Na) \ & = (AB ^ N-B ^ Na) B-B (B ^ Na-AB ^ N) + B ^ NAB-Bab ^ n \ & = (NB ^ {n-1} c) B-B (-Nb ^ {n-1} c) + B ^ N (AB-BA) -(BA-AB) B ^ n \ quad + B ^ {n + 1} A-AB ^ {n + 1} \ & = Nb ^ nC + NB ^ nC + B ^ nC + CB ^ N-(AB ^ {n + 1}-B ^ {n + 1}) \ & = 2 (n + 1) B ^ nc-(AB ^ {n + 1}-B ^ {n + 1} ). \ EEA \ eeex $ then $ \ Bex AB ^ {n + 1}-B ^ {n + 1} A = (n + 1) B ^ NC. \ EEx $

(2)

(1) and Hamilton-caylay theorem, $ \ Bex 0 = AF (B)-f (B) A = f' (B) C. \ EEx $

 

6. ($ 20' $) set $ \ BBR $ to a real number field, $ A \ In \ BBR ^ {n \ times N }$, and $ A $ to a symmetric matrix.

(1) prove that $ A $'s adjoint matrix $ A ^ * $ is also a real symmetric matrix;

(2) What are the sufficient conditions for the contract between $ A $ and $ A ^ * $? And prove your conclusion.

 

Proof:

(1) The real matrix is changed from $ \ BBR $ to the number field $ A ^ * = (A _ {IJ}) $. by $ \ beex \ Bea a _ {IJ} & = (-1) ^ {I + J} \ sev {\ BA {cccccc} A _ {11} & \ cdots & A _ {1, J-1} & A _ {1, J + 1} & \ cdots & A _ {1N} \ vdots & \ vdots \ A _ {I-1, 1} & \ cdots & A _ {I-1, J-1} & A _ {I-1, J + 1} & \ cdots & A _ {I-1, n} \ A _ {I +} & \ cdots & A _ {I + 1, J-1} & A _ {I + 1, J + 1} & \ cdots & A _ {I + 1, N }\\\ vdots & \ vdots \ A _ {N1} & \ cdots & A _ {n, j-1} & A _ {n, J + 1} & \ cdots & A _ {NN} \ EA} \ & = (-1) ^ {I + J} \ sev {\ BA {cccccc} A _ {11} & \ cdots & A _ {J-1, 1} & A _ {J +} & \ cdots & A _ {N1} \ vdots & \ vdots \ A _ {1, i-1} & \ cdots & A _ {J-1, I-1} & A _ {J + 1, I-1} & \ cdots & A _ {n, i-1} \ A _ {1, I + 1} & \ cdots & A _ {J-1, I + 1} & A _ {J + 1, I + 1} & \ cdots & A _ {n, I + 1 }\\\ vdots & \ vdots \ A _ {1N} & \ cdots & A _ {J-1, n} & A _ {J + 1, n} & \ cdots & A _ {NN} \ EA} \ quad \ sex {A _ {IJ} = A _ {Ji }\\& = (-1) ^ {J + I} \ sev {\ BA {cccccc} A _ {11} & \ cdots & A _ {1, I-1} & A _ {1, I + 1} & \ cdots & A _ {1N} \ vdots & \ vdots \ A _ {J-1, 1} & \ cdots & A _ {J-1, I-1} & A _ {J-1, I + 1} & \ cdots & A _ {J-1, n} \ A _ {J +} & \ cdots & A _ {J + 1, I-1} & A _ {J + 1, I + 1} & \ cdots & A _ {J + 1, N }\\\ vdots & \ vdots \ A _ {N1} & \ cdots & A _ {n, i-1} & A _ {n, I + 1} & \ cdots & A _ {1N} \\\ EA} \ quad \ sex {| B ^ t |=| B |}\\& = _{ ji }. \ EEA \ eeex $ Zhi $ A ^ * $ symmetry.

(2) We know from $ A, a ^ * $ real symmetry that they are orthogonal and diagonal arrays, $ A $, $ A ^ * $ respectively contract with $ \ Bex \ diag \ sex {\ lm_1, \ cdots, \ lm_n }, \ quad \ diag \ sex {\ prod _ {I \ NEQ 1} \ lm_ I, \ cdots, \ prod _ {I \ NEQ n} \ lm_ I }. \ EEx $ A, a ^ * $ the contract is equivalent to the above two diagonal matrix contracts, the feature value of $ A $ is greater than $0 $, which guarantees the above two diagonal matrix contracts (both contracts are in the unit matrix ). therefore, $ A $ zhengding is a sufficient condition for the $ A, a ^ * $ contract.

 

7. ($ 20' $) set $ V $ to the $ N $ dimension linear space on the number field $ \ BBP $, $ \ ve_1, \ cdots, \ ve_r, \ ve _ {R + 1}, \ cdots, \ ve_n $ is a group of bases of $ V $, $ \ Bex v_1 = L (\ ve_1, \ cdots, \ ve_r), \ quad V_2 = L (\ ve _ {R + 1}, \ cdots, \ ve_n ). \ EEx $

(1) prove $ v = v_1 \ oplus V_2 $;

(2) set $ \ SCRA $ to a linear transformation of $ v_1 $. $ \ scrb $ is a linear transformation of $ V_2 $, evaluate the linear transformation of $ V $ \ SCRC $ so that $ v_1 and V_2 $ are all $ \ SCRC $-constant subspaces, and $ \ SCRC $ is in $ v_1, the display on V_2 $ is $ \ Bex \ SCRC | _ {v_1 }=\ SCRA, \ quad \ SCRC |_{ V_2 }=\ scrb. \ EEx $

 

Proof:

(1) apparently.

(2) $ \ Bex \ SCRC \ sex {\ sum _ {I = 1} ^ n K_ I \ ve_ I }=\ sum _ {I = 1} ^ r K_ I \ SCRA (\ ve_ I) + \ sum _ {I = R + 1} ^ n K_ I \ scrb (\ ve_ I) \ EEx $.

[Journal of mathematics at home University] 308th questions about the Postgraduate Entrance Exam of Huazhong Normal University in 2006

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.