Machine learning Cornerstone Job 2 realize 1 and multidimensional decision Stump

Source: Internet
Author: User

Multidimensional Training data: Https://d396qusza40orc.cloudfront.net/ntumlone%2Fhw2%2Fhw2_train.dat

Multidimensional test data: Https://d396qusza40orc.cloudfront.net/ntumlone%2Fhw2%2Fhw2_test.dat

#!/usr/bin/env python #-*-coding:utf-8-*-"" "__title__ = ' onedimension.py ' __author__ = ' Administrator ' __mtime__ = ' 2015/10/10 ' "" "Import random from numpy import * def data_generator (size): X = zeros (size) Y = zeros (size) F or I in range (0, size): TMP = Random.uniform ( -1, 1) x[i] = tmp Flip = False if random.unif
    ORM (0, 1) < 0.2:flip = True Y[i] = Int (sign (TMP)) if flip:y[i] =-1 * y[i]
    return (x, y) def err_counter (x, y, Sflip, theta): DataSize = Len (x) s = 1 if not sflip:s =-1  ERR = 0 for i in range (0, datasize): h = S * SIGN (X[i]-theta) if H * Y[i] < 0:err = Err + 1 return Err def errout_calculator (Sflip, theta): s = 1 if not sflip:s =-1 return 0.5 +  0.3 * S * (ABS (theta)-1) def decision_stump_1d (X, Y): Sflip = true # true for s = +1, False for s =-1 datasize = Len (X) Sortedx =Sort (X) theta = 0 Errin = 0 thetabest = 0 errinbest = datasize #print Sortedx for I in range (0, DA Tasize + 1): if i = = 0:theta = (( -1.0) + sortedx[0]) * 0.5 elif i = = datasize:th ETA = (1.0 + sortedx[i-1]) * 0.5 Else:theta = (Sortedx[i] + sortedx[i-1]) * 0.5 Errin = E Rr_counter (X, Y, True, theta) if Errin < errinbest: (Sflip, thetabest, errinbest) = (True, theta, E Rrin) Errin = Err_counter (X, Y, False, theta) if Errin < errinbest: (Sflip, Thetabest, Erri
    nbest) = (False, theta, errin) errout = Errout_calculator (Sflip, thetabest) #print "errinbest:" + str (errinbest) #print "Errout:" + str (errout) #print ' ============================= ' #print "theta, Sflip =" + str (thetabes
 T) + ', ' + str (sflip) return ((Sflip, Thetabest), (Errinbest, Errout))


#!/usr/bin/env python
#-*-coding:utf-8-*-
"" "
__title__ = ' multidimension.py ' __author__
= ' Administrator '
__mtime__ = ' 2015/10/10 ' "" "

import random from
numpy import * from
onedimension Import *

def decision_stump_md (X, Y):
    (datasize, Datadim) = x.shape
    sflipbest = []
    thetabest = []
  errinbest = []
    theta = 0
    sflip = True
    for i in range (0, Datadim):
        res = decision_stump_1d (x[:, I], Y )
        Sflipbest.append (res[0][0])
        thetabest.append (res[0][1])
        errinbest.append (res[1][0))
    Bestdim = Argsort (Errinbest) [0]
    theta = Thetabest[bestdim]
    sflip = Sflipbest[bestdim]
    print sflipbest< C25/>print thetabest
    Print errinbest
    print ([Sflip, Theta, Bestdim], Errinbest[bestdim]) return
    ([ Sflip, Theta, Bestdim], Errinbest[bestdim]


def errout_estimator (X, Y, Sflip, Theta, Dim):
    errout = Err_ Counter (x[:, Dim), Y, Sflip, theta) return
    errout



#!/usr/bin/env python #-*-coding:utf-8-*-"" "__title__ = ' HW 2 main.py ' __author__ = ' w1d2s ' __mtime__ = ' 2015/10/10 ' "" "From numpy Import * onedimension import * from multidimension import * Import sys import string def data_pretre Atment (path): rawdata = open (path). ReadLines () print RawData datanum = Len (rawdata) Datadim = Len (rawdata[ 0].strip (). Split ('))-1 dataidx = 0 X = zeros ([Datanum, Datadim]) Y = zeros (datanum) print (Datanum, dat ADim in rawdata:templist = Line.strip (). Split (") y[dataidx] = String.atoi (Templist[datadi M]) X[dataidx,:] = Templist[0:datadim] Dataidx + + 1 return (X, Y) if __name__ = = ' __main__ ': '
    ' Print ' Hello world! ' errincnt = 0 erroutcnt = 0 round = 5000 for I in range (0, round): X, Y = Data_generator RE s = decision_stump_1d (X, Y) errincnt = errincnt + res[1][0] erroutcnt = erroutcnt + res[1][1] PRint ' Average errin: ' + str (float (errincnt/round)) print ' Average errout: ' + str (float (erroutcnt/round)) '
    X, y = data_pretreatment (' train.txt ') x_t, y_t = data_pretreatment (' test.txt ') res = DECISION_STUMP_MD (x, y) Sflip = res[0][0] theta = res[0][1] Dim = res[0][2] Print errout_estimator (x_t, y_t, Sflip, Theta, Dim)




Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.