# Minimum spanning tree template

Source: Internet
Author: User

1.prim

The efficiency of the prim algorithm depends on the number of nodes and is suitable for dense graphs.

`#include <iostream>#include<stdio.h>#include<string.h>using namespacestd;#defineINF 0x7fffffff#defineMAXN 128BOOLVIS[MAXN];intLOWC[MAXN];intPrimintCOST[][MAXN],intN) {//marking starting from 0    intans=0, I,j,minc,p; memset (Vis,false,sizeof(VIS)); vis[0]=true;  for(i=1; i<n;++i) lowc[i]=cost[0][i];  for(i=1; i<n;++i) {Minc=INF; P=-1;  for(j=0; j<n;++j)if(!vis[j]&&lowc[j]<minc) {Minc=Lowc[j]; P=J; }        if(Minc==inf)return-1;//The original is not connectedans+=Minc; VIS[P]=true;  for(j=0; j<n;++j)if(!vis[j]&&cost[p][j]<Lowc[j]) lowc[j]=Cost[p][j]; }    returnans;}intMain () {intN,m,a,b,w,i; intCOST[MAXN][MAXN];  while(~SCANF ("%d", &n) &&N) {m=n* (n1)/2;//m side Stripe number         for(i=0; i<m;++i) {scanf ("%d%d%d",&a,&b,&W); --a;--b; COST[A][B]=cost[b][a]=W; } printf ("%d\n", Prim (cost,n)); }    return 0;}`
View Code

2.kruskal

The efficiency of the Kruskal algorithm depends on the number of edges and is suitable for sparse graphs.

`#include <iostream>#include<stdio.h>#include<string.h>#include<algorithm>using namespacestd;#defineMAXN 110//maximum number of points#defineMAXM 10000//maximum number of sidesintF[MAXN];//and check the set usestructedge{intU,v,w;} EDGE[MAXM];//Storage edge information, including start/end/Weight valuesintTol//number of edges, assigned 0 before adding edgevoidAddedge (intUintVintW) {edge[tol].u=u; EDGE[TOL].V=v; Edge[tol++].w=W;}//sort functions to sort edges from small to large by weightBOOLCMP (Edge A,edge b) {returna.w<B.W;}intFindintx) {    if(f[x]==-1)returnx; returnf[x]=find (F[x]);}//incoming number, returns the minimum spanning tree weight, if not connected return-1intKruskal (intN) {memset (F,-1,sizeof(F)); Sort (Edge,edge+tol,cmp); intCnt=0;//calculate the number of joined edges    intans=0, I,u,v,w,t1,t2;  for(i=0; i<tol;++i) {u=edge[i].u; V=edge[i].v; W=EDGE[I].W; T1=find (U); T2=Find (v); if(t1!=T2) {ans+=W; F[T1]=T2; ++CNT; }        if(cnt==n-1) Break; }    if(cnt<n-1)return-1;//Not Connected    returnans;}intMain () {intN,m,a,b,w,i;  while(~SCANF ("%d", &n) &&N) {m=n* (n1)/2;//m side Stripe numberTol=0;  for(i=0; i<m;++i) {scanf ("%d%d%d",&a,&b,&W);        Addedge (A,B,W); } printf ("%d\n", Kruskal (n)); }    return 0;}`
View Code

Minimum spanning tree template

Related Keywords:

### Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

## A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

• #### Sales Support

1 on 1 presale consultation

• #### After-Sales Support

24/7 Technical Support 6 Free Tickets per Quarter Faster Response

• Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.