Sheihuimin, Yun, Yi-Huai, Chanding-bian compilation of mathematical Analysis exercises Lecture notes section 16.2 exercises reference answers [from Tao younger brother]

Source: Internet
Author: User
Tags sin

1. Set the known $ \sum\limits_{n = 1}^\infty {{{\left ({-1} \right)}^{n-1}}{a_n}} = A,\sum\limits_{n = 1}^\infty {{a_{2n-1 }}} = B $, proof: $ \sum\limits_{n = 1}^\infty {{A_n}} $ converge and ask for and.
Solution: There is obviously
\[\sum\limits_{n = 1}^\infty {{A_n}} =2\sum\limits_{n = 1}^\infty {{a_{2n-1}}}-\sum\limits_{n = 1}^\infty{{{\left ( {-1} \right)}^{n-1}}{a_n}} = 2b-a.\]

2. Set $ P (x) =a_0+a_1x+\cdots+a_mx^m$ to $ M $ polynomial, order $ \sum\limits_{n= 0}^\infty {\frac{{p\left (n \right)}}{{n!}} $ and.
solution: In fact,
$$\begin{align*}{b_k} &= \sum\limits_{n =0}^\infty {\frac{{{n^k}}}{{n!}}} = \sum\limits_{n = 1}^\infty {\frac{{ {n^{k-1}}}} {{\left ({n-1} \right)!}}} = \sum\limits_{n = 0}^\infty {\frac{{{{\left ({n + 1} \right)}^{k-1}}}}{{n!}} \\&= {b_{k-1}} + c_{k-1}^1{b_{k-2 }} + \cdots + c_{k-1}^{k-2}{b_1} + {b_0},\end{align*}$$
where $ b_0=e $.
The resulting number is called the bell number, recorded as $ B_n $, and
\[b\left (x \right) = \sum\limits_{n = 0}^\infty{\frac{{b\left (n \right)}}{{n!}} {X^n}} = {E^{{e^x}-1}}.\]

back to the original question, we have \[\sum\limits_{n = 0}^\infty {\frac{{p\left (n\right)}}{{n!}}} = E\sum\limits_{k = 0}^m {{a_k}{b_k}}. \]

3. Ask for $1-\frac{{{2^3}}}{{1!}} + \frac{{{3^3}}}{{2!}}-\frac{{{4^3}}}{{3!}} + \cdots $ .
solution: In fact,
$$\begin{align*}{b_k} &= \sum\limits_{n =0}^\infty {{{\left ({-1} \right)}^n}\frac{{{n^k}}}{{n!}} = \sum\ Limits_{n =1}^\infty {{\left ({-1} \right)}^n}\frac{{{n^{k-1}}}}{{\left ({n-1}\right)!}} = \sum\limits_{n = 0}^\in Fty {{{\left ({-1}\right)}^{n+1}}\frac{{{{\left ({n + 1} \right)}^{k-1}}}}{{n!}}} \\& =-{b_{k-1}}-c_{k-1}^1{ B_{k-2}}-\cdots-c_{k-1}^{k-2}{b_1}-{b_0},\end{align*}$$
where $ b_0=1/e $. So $ b_1=-1/e,b_2=0,b_3=1/e $.

so
$$\begin{align*}& 1-\frac{{{2^3}}}{{1!}} +\frac{{{3^3}}}{{2!}}-\frac{{{4^3}}}{{3!}} + \cdots = \sum\limits_{ N =0}^\infty {{{\left ({-1} \right)}^n}\frac{{{{\left ({n + 1}\right)}^3}}}{{n!}}} \\=& {b_3} + 3{b_2} + 3{b_1} + {b _0} =-\frac{1}{e}.\end{align*}$$

4. The sum of the following series: (1) $ \sum\limits_{n= 1}^\infty {\arctan \frac{1}{{2{n^2}}} $; (2) $ \sum\limits_{n = 1}^\infty{\arctan \frac{2}{{{n^2}}} $.
solution: In fact
\[\sum\limits_{n = 1}^\infty {\arctan\frac{1}{{2{n^2}}} = \sum\limits_{n = 1}^\infty {\left ({\arctan \frac{1}{{2n- 1}}-\arctan \frac{1}{{2n + 1}}} \right)} = \frac{\pi}{4}.\]
and
\[\sum\limits_{n = 1}^\infty {\arctan \frac{2}{{{n^2}}}}= \sum\limits_{n = 1}^\infty {\left ({\arctan \frac{1}{{n-1} }-\arctan\frac{1}{{n + 1}}} \right)} = \frac{\pi}{2} + \frac{\pi}{4} = \frac{{3\pi}}{4}.\]
5. Set $ A>1 $, ask $ \sum\limits_{n = 0}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} +1}} $ and.
solution: In fact
$$\begin{align*}\sum\limits_{n = 0}^\infty{\frac{{{2^n}}}{{{a^{{2^n}} + 1}}} &= \frac{1}{{a + 1} + \sum\limits _{n =1}^\infty {\frac{{{2^n}}}{{{a^{{2^n}} + 1}} = \frac{1}{{a + 1}}-\frac{1}{{a-1} + \frac{1}{{a + 1}} + \sum\limit S_{n = 1}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}}+ 1}}} \\&= \frac{1}{{a + 1}}-\frac{2}{{{a^2}-1}} + \sum\limits_{n =1 }^\infty {\frac{{{2^n}}}{{{a^{{2^n}} + 1}}} = \frac{1}{{a + 1}}-\frac{{{2^2}}}{{{a^{{2^2}}-1}} + \sum\limits_{n = 2}^ \infty{\frac{{{2^n}}}{{{a^{{2^n}} + 1}}} \\&= \frac{1}{{a + 1}}-\mathop {\lim}\limits_{n \to \infty} \frac{{{2^{n + 1}}}}{{{a^{{2^{n + 1}}}-1}} =\frac{1}{{a + 1}}.\end{align*}$$

6. Request $1 +\frac{1}{3}-\frac{1}{5}-\frac{1}{7} + \frac{1}{9} + \frac{1}{{11}}-the and of \cdots$.
Solution:
$$\begin{align*}&\sum\limits_{n = 1}^\infty{\left ({\frac{1}{{8n-7}} + \frac{1}{{8n-5}}-\frac{1}{{8n-3}}- \frac{1}{{8n-1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left ({{x^{8n-8}} + {x^{8n-6}}-{x^{8n-4}}-{ X^{8n-2}}} \right)}} \\=&\int_0^1 {\sum\limits_{n = 1}^\infty {\left ({{x^{8n-8}} + {x^{8n-6}}-{x^{8n-4}}- {X^{8n-2}}} \right)} dx} = \int_0^1 {\frac{{1 + {x^2}-{x^4}-{x^6}}}{{1-{X^8}}}DX} \\= &\left. {\frac{{\arctan \left ({1 + \sqrt 2x} \right)-\arctan \left ({1-\sqrt 2 x} \right)}}{{\sqrt 2}} \right|_0^1= \frac{\ Pi}{{2\sqrt 2}}.\end{align*}$$

7. Ask for $1-\frac{1}{7} + \frac{1}{9}-\frac{1}{{15}} + \cdots $ for the and.
Solution:
$$\begin{align*}&\sum\limits_{n = 1}^\infty{\left ({\frac{1}{{8n-7}}-\frac{1}{{8n-1}}} \right)} = \sum\limit S_{n =1}^\infty {\int_0^1 {\left ({{x^{8n-8}}-{x^{8n-2}}} \right)}} \\=&\int_0^1 {\sum\limits_{n = 1}^\infty {\ Left ({{x^{8n-8}}-{x^{8n-2}}}\right)} dx} = \int_0^1 {\frac{{1-{x^6}}}{{1-{X^8}}}DX} \\= &\left. {\frac{{2\arctan x + \sqrt 2 \arctan \left ({1 + \sqrt 2 x} \right)-\arctan\left ({1-\sqrt 2 x} \right)}}{4}} \right|_ 0^1 = \frac{{\sqrt 2 + 1}}{8}\pi. \end{align*}$$

8. Ask for $1-\frac{1}{4} + \frac{1}{7}-\frac{1}{{10}} + \cdots $ for the and.
Solution:
$$\begin{align*}&\sum\limits_{n = 1}^\infty{\left ({\frac{1}{{6n-5}}-\frac{1}{{6n-2}}} \right)} = \sum\limit S_{n =1}^\infty {\int_0^1 {\left ({{x^{6n-6}}-{x^{6n-3}}} \right)}} \\=&\int_0^1 {\sum\limits_{n = 1}^\infty {\ Left ({{x^{6n-6}}-{x^{6n-3}}}\right)} dx} = \int_0^1 {\frac{{1-{x^3}}}{{1-{X^6}}}DX} = \int_0^1{\frac{1}{{1 + {x ^3}}}DX} \\=& \left. {\left ({-\frac{1}{6}\ln \left ({{x^2}-X + 1} \right) + \frac{1}{3}\ln \left ({x + 1} \right) +\frac{{\arctan \frac{{2x -1}}{{\sqrt 3}}}}{{\sqrt 3}} \right)} \right|_0^1= \frac{{\sqrt 3 \pi + 3\ln 2}}{9}.\end{align*}$$

9. Set $ {A_n} = 1 +\frac{1}{2} + \cdots + \frac{1}{n},n =, \cdots $, ask $ \sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{ {N\left ({n +1} \right)}}} $ 's and.
Solution:
$$\begin{align*}&\sum\limits_{n = 1}^\infty{\frac{{{a_n}}}{{n\left ({n + 1} \right)}} = \sum\limits_{n = 1}^\ Infty{\frac{{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{{n\left ({n + 1} \right)}}}\\=&\sum\limits_{n = 1}^\infty {\left ({\frac{{1 + \frac{1}{2} + \cdots +\frac{1}{n}}}{n}-\frac{{1 + \frac{1}{2} + \cdots + \frac{1}{{n + 1}}}}{{n +1}}} \rig HT)} + \sum\limits_{n = 1}^\infty {\frac{1}{{{{\left ({n + 1}\right)}^2}}} \\= & 1-\mathop {\lim}\limits_{n \to \i NFTY} \frac{{1 +\frac{1}{2} + \cdots + \frac{1}{{n + 1}}}}{{n + 1} + \left ({\frac{{{\pi^2}}}{6}-1} \right) = \frac{{{ \pi ^2}}}{6}-\mathop {\lim}\limits_{n \to\infty} \frac{{\frac{1}{{n + 2}}}}{1} = \frac{{{\pi ^2}}}{6}.\end{align*}$$

10. Ask $ \sum\limits_{n = 0}^\infty {\left ({\frac{1}{{4n + 1}} +\frac{1}{{4n + 3}}-\frac{1}{{2n + 2}}} \right)} $ and.
Solution:
$$\begin{align*}&\sum\limits_{n = 0}^\infty{\left ({\frac{1}{{4n + 1}} + \frac{1}{{4n + 3}}-\frac{1}{{2n + 2}} \right)}= \sum\limits_{n = 0}^\infty {\int_0^1 {\left ({{x^{4n}} + {x^{4n + 2}}-{x^{2n + 1}} \right)}} \\= &\int_0^ 1 {\sum\limits_{n = 0}^\infty {\left ({{x^{4n}} + {x^{4n + 2}}-{x^{2n + 1}}} \right)} dx} = \int_0^1 {\left ({\frac{{1 + { X^2}}}{{1-{X^4}}}-\frac{x}{{1-{x^2}}}} \right) dx} \\=&\int_0^1 {\frac{1}{{1 + x}}dx} = \ln 2.\end{align*}$$

11. Ask for $1-\frac{1}{4} + \frac{1}{6}-\frac{1}{9} + \frac{1}{{11}}-\frac{1}{{14}} + \cdots $ .
Solution:
$$\begin{align*}&\sum\limits_{n = 1}^\infty{\left ({\frac{1}{{5n-4}}-\frac{1}{{5n-1}}} \right)} = \sum\limit S_{n =1}^\infty {\int_0^1 {\left ({{x^{5n-5}}-{x^{5n-2}}} \right) dx}} \\=&\int_0^1 {\sum\limits_{n = 1}^\infty {\left ({{x^{5n-5}}-{x^{5n-2}}}\right)} dx} = \int_0^1 {\frac{{1-{x^3}}}{{1-{X^5}}}DX} \\= &\left. {\left ({\frac{{\left ({5-\sqrt 5} \right)/10}}{{{x^2} + \frac{{\sqrt 5 +1}}{2}x + 1}} + \frac{{\left ({5 + \sqrt 5} \ right)/10}}{{{x^2} + \frac{{-\sqrt 5 + 1}}{2}x + 1}}} \right)} \right|_0^1 = \frac{{\sqrt {+ 10\sqrt 5}}}{{25}}\pi. \e nd{align*}$$

12. Ask for $ \frac{{{x^3}}}{{3!}} + \frac{{{x^9}}}{{9!}} +\frac{{{x^{15}}}}{{15!}} + \cdots $ and function.
solution: In fact, the equation $ \omega^3=1$ has three roots $1,{-\frac{1}{2} +\frac{{\sqrt 3 i}}{2}},{-\frac{1}{2}-\frac{{\sqrt 3 i}}{2}} $. Using $ \sinh $ to get the required function
$$\begin{align*}&\frac{{\sinh x + \sinh \left ({-\frac{1}{2} + \frac{{\sqrt 3 i}}{2}} \right) x + \sinh \left ({- \FRAC{1}{2}-\frac{{\sqrt 3 i}}{2}} \right) x}}{3}\\= &-\frac{2}{3}\sinh\frac{x}{2}\cos \frac{{\sqrt 3 x}}{2} + \fra C{{\sinh x}}{3} =\frac{{{x^3}}}{{3!}} + \frac{{{x^9}}}{{9!}} + \frac{{{x^{15}}}}{{15!}} + \cdots.\end{align*}$$

We also have

$$\begin{align*}&{\frac{{\sin x +\sin \left ({-\frac{1}{2} + \frac{{\sqrt 3 i}}{2}} \right) x + \sin \left ({-\f RAC{1}{2}-\frac{{\sqrt 3 i}}{2}} \right) x}}{{-3}}}\\= &\frac{2}{3}\sin\frac{x}{2}\cosh \frac{{\sqrt 3 x}}{2}-\fra C{{\sin x}}{3} = \frac{{{x^3}}}{{3!}} -\frac{{{x^9}}}{{9!}} + \frac{{{x^{15}}}}{{15!}}-\frac{{{x^{21}}}}{{21!}} +\cdots. \end{align*}$$

13. Ask $ \sum\limits_{n = 1}^\infty {\frac{{{{\left[{\left {n-1}\right)!} \right]}^2}}}{{\left ({2n} \right)!}} {{\left ({2x} \right)}^{2n}}} $ and the function.
solution: On $ |x|<1 $ on the derivative of $ s (x) $, know $ S ' \left (x \right) = 2\sum\limits_{n = 1}^\infty{\frac{{{{\left[{\left ({n-1} \right)!} \right]}^2}}}{{\left ({2n-1}\right)!}} {{\left ({2x} \right)}^{2n-1}}} $, and $ S ' \left (x \right) = 4\sum\limits_{n = 1}^\infty{\frac{{{{\left[{\left ({n-1} \right)!} \right]}^2}}}{{\left ({ 2n-2}\right)!}} {{\left ({2x} \right)}^{2n-2}}} $. This may be $ (1-x^2) S ' (x)-xs ' (x) =4 $. At both ends multiplied by $ {(1-x^2)}^{-1/2} $, we have
\[{\left ({\sqrt {1-{x^2}} S ' \left (x \right)}\right) ^\prime} = \frac{4}{{\sqrt {1-{x^2}}}},\]
\[s\left (x \right) = \frac{{4\arcsin x}}{{\sqrt{1-{x^2}}} + \frac{1}{{\sqrt {1-{x^2}}}},\quad \left| x \right| < 1.\]

14. Ask $ \sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left ({1-{x^n}} \right) \left ({1-{x^{n + 1}}}}}} $ and the function.
the solution: notice
$$\begin{align*}&\left ({1-\frac{1}{x}}\right) \sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left ({1-{x^ N}}\right) \left ({1-{x^{n + 1}} \right)}} \\=& \sum\limits_{n = 1}^\infty{\frac{{{x^{n + 1}}}}{{\left ({1-{x^n}} \right) \left ({1-{x^{n + 1}}}\right)}}-\sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{\left ({1-{x^n}}\right) \left ({ 1-{x^{n + 1}} \right)}}} \\= &\sum\limits_{n = 1}^\infty{\frac{{{x^{n + 1}}-{X^n}}}{{\left ({1-{x^n}} \right) \l EFT ({1-{x^{n + 1}}}\right)}}} = \sum\limits_{n = 1}^\infty {\left ({\frac{1}{{1-{x^{n + 1}}}}-\frac{1}{{1-{x^n}}} \right)} \\=& \mathop {\lim}\limits_{n \to \infty}\frac{1}{{1-{x^{n + 1}}}-\frac{1}{{1-x}} = \begin{cases}\f Rac{1}{{x-1}},&\left| X \right| > 1\\\frac{x}{{x-1}},&\left| X \right| <1\end{cases}. \end{align*}$$
so
\[\sum\limits_{n = 1}^\infty {\frac{{{x^{n +1}}}}{{\left ({1-{x^n}} \right) \left ({1-{x^{n + 1}}} \right)}} =\beg In{cases}\frac{x}{{{{\left ({x-1} \right)}^2}}, &\left| X \right|> 1\\\frac{{{x^2}}}{{{{\left ({x-1} \right)}^2}}, &\left| x \right|< 1\end{cases}. \]

15. Set $ \sum\limits_{n = 1}^\infty {\frac{1}{{{a_n}}} $ for divergent positive progression, $ x>0 $, $ \sum\limits_{n = 1}^\infty {\frac{{{ a_1}{a_2} \cdots{a_n}}}{{\left ({{a_2} + x} \right) \cdots \left ({{a_{n + 1}} + x} \right)}}} $ and function.
solution: First,
$$\begin{align*}&\sum\limits_{n = 1}^\infty{\frac{{{a_1}{a_2} \cdots {A_n}}}{{\left ({{a_2} + x} \right) \cdots \left ({{a_{n + 1}} + x} \right)}} \\=& \frac{{{a_1}}}{{{a_2} + x}} +\frac{1}{x}\sum\limits_{n = 2}^\infty {\left[{\f rac{{{a_1}{a_2} \cdots{a_n}}}{{\left ({{a_2} + x} \right) \cdots \left ({{a_n} + x} \right)}}-\frac{{{a_1}{a_2} \cdots {A _{n + 1}}}}{{\left ({{a_2} + x} \right) \cdots\left ({{a_{n + 1}} + x} \right)}}} \right]} \\=& \frac{{{a_1}}}{{{a_2} +X}} + \frac{1}{x}\left[{\frac{{{a_1}{a_2}}}{{{a_2} + x}}-\mathop {\lim}\limits_{n \to \infty} \frac{{{a_1}{a_2} \cdot s {a_{n + 1}}}}{{\left ({{a_2}+ x} \right) \cdots \left ({{a_{n + 1}} + x} \right) }}} \right].\end{align*}$$
when $ N $ is large enough, \[1 + \frac{x}{{{a_{n + 1}}} \sim {e^{x/{a_{n +1}}}}.\]
therefore $ {\left ({1+ \frac{x}{{{a_2}}} \right) \cdots \left ({1 + \frac{x}{{{a_{n + 1}}}}}\right)} $ with \exp \left\{{x\s Um\limits_{n = 1}^\infty {\frac{1}{{{a_n}}}} \right\} $ has the same convergence, all divergent, so
\[\mathop {\lim}\limits_{n \to \infty}\frac{{{a_1}{a_2} \cdots {a_{n + 1}}}}{{\left ({{a_2} + x} \right) \cdots\left ({{a_{n + 1}} + x} \right}} = \mathop {\lim}\limits_{n \to \infty}\frac{{{a_1}}}{{\left ({1 + \frac{x}{{{a_2}}} \right) \cdots \left ({1 + \frac{x} {{{a_{n+ 1}}}} \right)}} = 0.\]
thereby
\[\sum\limits_{n = 1}^\infty {\frac{{{a_1}{a_2}\cdots {a_n}}}{{\left ({{a_2} + x} \right) \cdots \left ({{a_{n + 1}} + x}\right)}}} = \frac{{{a_1}}}{{{a_2} + x}} + \frac{{{a_1}{a_2}}}{{x\left ({{a_2}+ x} \right)}} = \frac{{{a_1}}}{x}.\]

16. Set $ X>1 $, request $ \frac{x}{{x+ 1} + \frac{{{x^2}}}{{\left ({x + 1} \right) \left ({{x^2} + 1} \right)}} +\frac{{{x^ 4}}}{{\left ({x + 1} \right) \left ({{x^2} + 1} \right) \left ({{x^4} +1} \right)} + \cdots $ and functions.
solution: $$\begin{align*}i&= \left ({1-\frac{1}{{x + 1}}} \right) + \frac {{{x^2}}} {{\left ({x + 1}\right) \left ({{x^2} + 1} \right)} + \frac{{{x^4}}}{{\left ({x + 1}\right) \left ({{x^2} + 1} \right) \left ({{x^4} + 1} \right)}} + \cdots \\&=1 + \left ({-\frac{1}{{x + 1}} + \frac{{{x^2}}}{{\left ({x + 1} \right) \left ({{x^2} + 1} \right)}}} \ri ght) + \frac{{{x^4}}}{{\left ({x + 1} \right) \left ({{x^2} + 1} \right) \left ({{x^4} + 1} \right)}} + \cdots \\&= 1-\f Rac{1}{{\left ({x + 1} \right) \left ({{x^2} + 1} \right)}} + \frac{{{x^4}}}{{\left ({x + 1} \right) \left ({{x^2} + 1} \righ T) \left ({{x^4} + 1} \right)}} + \cdots\\&= 1-\frac{1}{{\left ({x + 1} \right) \left ({{x^2} + 1} \right) \left ({{x^4} + 1} \right}} + \cdots \\&= \cdots = 1-\mathop {\lim}\limits_{n\to \infty} \frac{1}{{\left ({x + 1} \right) \left ({{x^2} + 1} \right) \cdots\left ({{x^{{2^{n-1}}} + 1} \right)}} = 1.\end{align*}$$ 

Originating from: http://www.math.org.cn/forum.php?mod=viewthread&tid=35174 [not verified its correctness, for reference only]

Sheihuimin, Yun, Yi-Huai, Chanding-bian compilation of mathematical Analysis exercises Lecture notes section 16.2 exercises reference answers [from Tao younger brother]

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.