Simulated Mobile Robot Control (4) (Modified again)

Source: Internet
Author: User

Environment: win7;

Added Count display for analog Photoelectric Encoder

CLC; close all; clearsubplot (121); Title ('simulated robot coordinate '); hold onaxis ([0,130, 0,200]); t = 0.01; t = 1; [x, y] = ginput (1); C = PI/2; P = [x, y, C]; L = 4; V = 4; VL = V; Vr = V; PL = [X-L/2, y]; Pr = [x + L/2, y]; plot (PL (1) + Pr (1)/2, (PL (2) + Pr (2)/2, 'K * '); plot (PL (1), PL (2), 'ro '); plot (Pr (1), Pr (2), 'bo'); text (40,180, {strcat ('P = ', num2str (PL (1) + Pr (1)/2), ',', num2str (PL (2) + Pr (2)/2)}); Report (:, T) = [VL; VR; P (1); P (2)]; t = t + 1; subplot (122); % plot (1: T-1, report (1, :) * 10, 'R. ', 1: T-1, Report (2, :) * 10,' B. ', 1: T-1, report (3, :), 'G', 1: T-1, report (4, :), 'C '); title ('analog photoelectric encoder pulse count'); % legend ('revolver count', 'right wheel count', 'x', 'y', 'location ', 'northwest'); pause (t); While (1) subplot (121); [XT, yt] = ginput (1); % capture data with the mouse in figure, 1 indicates capturing Pt = [XT; yt]; % Pt = [XT; yt; CT] target point plot (Pt (1), Pt (2), 'K. ', 'linewidth', 4); D = (P (1)-Pt (1 )). ^ 2 + (P (2)-Pt (2 )). ^ 2 ). ^ 0.5; % (Pr (1)-PL (1 )). ^ 2 + (Pr (2)-PL (2 )). ^ 2 ). ^ 0.5 while (D> V) % keep moving at a speed greater than the target point if (Pt (1)> = P (1) & Pt (2)> = P (2) if (Pt (1)> = P (1) & Pt (2)> = P (2) Ct = atan (Pt (2) -P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1) <= P (1) & Pt (2)> = P (2 )) ct = PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1) <= P (1) & Pt (2) <= P (2 )) ct = PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1)> = P (1) & Pt (2) <= P (2 )) ct = atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % end elseif (Pt (1) <= P (1) & Pt (2)> = P (2 )) if (Pt (1)> = P (1) & Pt (2)> = P (2) Ct = atan (Pt (2)-P (2 )) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1) <= P (1) & Pt (2)> = P (2 )) ct = PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1) <= P (1) & Pt (2) <= P (2 )) ct = PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1)> = P (1) & Pt (2) <= P (2 )) ct = atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % end elseif (Pt (1) <= P (1) & Pt (2) <= P (2 )) if (Pt (1)> = P (1) & Pt (2)> = P (2) Ct = atan (Pt (2)-P (2 )) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1) <= P (1) & Pt (2)> = P (2 )) ct = PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1) <= P (1) & Pt (2) <= P (2 )) ct = PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1)> = P (1) & Pt (2) <= P (2 )) ct = 2 * PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % end elseif (Pt (1)> = P (1) & Pt (2) <= P (2 )) if (Pt (1)> = P (1) & Pt (2)> = P (2) Ct = atan (Pt (2)-P (2 )) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1) <= P (1) & Pt (2)> = P (2 )) ct = PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1) <= P (1) & Pt (2) <= P (2 )) ct =-PI + atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % current and target point angle elseif (Pt (1)> = P (1) & Pt (2) <= P (2 )) ct = atan (Pt (2)-P (2) * (Pt (1)-P (1 )). ^ (-1); % end v = 0.2; W = 2 * V/L; while (C> (CT + 0.5 * W) | C <= (Ct-0.5 * w) % angle adjustment if (C> CT) n =-1; else n = 1; end VL =-1 * n * V; vr = N * V; DSL = L * sin (0.5 * ABS (w); DSR = L * sin (0.5 * ABS (w )); if (Pt (1)> = P (1) & Pt (2)> = P (2) if (Pr (1)> = pl (1) & pr (2)> = pl (2) c = atan (Pr (2)-PL (2) * (Pr (1) -PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2)> = pl (2 )) C = PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2) <= pl (2 )) C =-PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1)> = pl (1) & pr (2) <= pl (2 )) C = atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); End elseif (Pt (1) <= P (1) & Pt (2)> = P (2) if (Pr (1)> = pl (1) & pr (2)> = pl (2) c = atan (Pr (2)-PL (2) * (Pr (1) -PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2)> = pl (2 )) C = PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2) <= pl (2 )) C =-PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1)> = pl (1) & pr (2) <= pl (2 )) C = atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); End elseif (Pt (1) <= P (1) & Pt (2) <= P (2) if (Pr (1)> = pl (1) & pr (2)> = pl (2) c = atan (Pr (2)-PL (2) * (Pr (1) -PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2)> = pl (2 )) C = PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2) <= pl (2 )) C = PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1)> = pl (1) & pr (2) <= pl (2 )) C = atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); End elseif (Pt (1)> = P (1) & Pt (2) <= P (2) if (Pr (1)> = pl (1) & pr (2) >=pl (2) c = atan (Pr (2)-PL (2) * (Pr (1) -PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2)> = pl (2 )) C =-PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2) <= pl (2 )) C =-PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1)> = pl (1) & pr (2) <= pl (2 )) C = atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); end C = C + PI/2; PL = pl + [-1 * n * DSL * Cos (C + N * w/2 ), -1 * n * DSL * sin (C + N * w/2)]; Pr = Pr + [N * DSR * Cos (C + N * w/2 ), N * DSR * sin (C + N * w/2)]; % (Pr (1)-PL (1 )). ^ 2 + (Pr (2)-PL (2 )). ^ 2 ). ^ 0.5 CLF; subplot (121); Title ('simulated robot coordinate '); Hold on axis ([0,130, 0,200]); text (20,180, {strcat ('destination seat: PT = ', num2str (Pt (1),', ', num2str (Pt (2),', ', 'ct =', num2str (CT/PI ), '* PI') strcat ('Robot seat: P = ', num2str (PL (1) + Pr (1)/2 ),',', num2str (PL (2) + Pr (2)/2), ',', 'c = ', num2str (C/PI),' * PI '), strcat ('left and right wheel speed: VL = ', num2str (VL),', ', 'vr =', num2str (VR), ',', 'W = ', num2str (w),}); plot (PL (1) + Pr (1)/2, (PL (2) + Pr (2)/2, 'K * '); plot (PL (1), PL (2), 'ro'); plot (Pr (1), Pr (2), 'bo '); plot (Pt (1), Pt (2), 'K. ', 'linewidth', 4); plot (Report (3, :), report (4, :)); P = [(PL (1) + Pr (1 )) /2, (PL (2) + Pr (2)/2, c]; D = (P (1)-Pt (1 )). ^ 2 + (P (2)-Pt (2 )). ^ 2 ). ^ 0.5; Report (:, t) = [VL; VR; P (1); P (2)]; t = t + 1; % subplot (122 ); % plot (1: T-1, report (1, :) * 10, 'R. ', 1: T-1, Report (2, :) * 10,' B. ', 1: T-1, report (3, :), 'G', 1: T-1, report (4, :), 'C '); title ('analog photoelectric encoder pulse count'); % legend ('revolver count', 'right wheel count', 'x', 'y', 'location ', 'northwest'); pause (t); End v = 4; VL = V + (2 * rand-1) * 0.05 * V; vr = V + (2 * rand-1) * 0.05 * V; W = (VR-VL)/L; RL = ABS (VL/W ); RR = ABS (VR/W); DSL = 2 * rl * sin (0.5 * ABS (w )); DSR = 2 * RR * sin (0.5 * ABS (w); If (Pt (1)> = P (1) & Pt (2)> = P (2) if (Pr (1)> = pl (1) & pr (2)> = pl (2) c = atan (Pr (2) -PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2)> = pl (2 )) C = PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2) <= pl (2 )) C =-PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1)> = pl (1) & pr (2) <= pl (2 )) C = atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); End elseif (Pt (1) <= P (1) & Pt (2)> = P (2) if (Pr (1)> = pl (1) & pr (2)> = pl (2) c = atan (Pr (2)-PL (2) * (Pr (1) -PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2)> = pl (2 )) C = PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2) <= pl (2 )) C =-PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1)> = pl (1) & pr (2) <= pl (2 )) C = atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); End elseif (Pt (1) <= P (1) & Pt (2) <= P (2) if (Pr (1)> = pl (1) & pr (2)> = pl (2) c = atan (Pr (2)-PL (2) * (Pr (1) -PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2)> = pl (2 )) C = PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2) <= pl (2 )) C = PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1)> = pl (1) & pr (2) <= pl (2 )) C = atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); End elseif (Pt (1)> = P (1) & Pt (2) <= P (2) if (Pr (1)> = pl (1) & pr (2)> = pl (2) c = atan (Pr (2)-PL (2) * (Pr (1) -PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2)> = pl (2 )) C =-PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1) <= pl (1) & pr (2) <= pl (2 )) C =-PI + atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); elseif (Pr (1)> = pl (1) & pr (2) <= pl (2 )) C = atan (Pr (2)-PL (2) * (Pr (1)-PL (1 )). ^ (-1); end C = C + PI/2; PL = pl + [DSL * Cos (C + W/2 ), DSL * sin (C + W/2)]; Pr = Pr + [DSR * Cos (C + W/2), DSR * sin (C + W/2)]; CLF; subplot (121); Title ('simulated robot coordinates '); Hold on axis ([0,130, 0,200]); text (20,180, {strcat ('destination seat: PT = ', num2str (Pt (1),', ', num2str (Pt (2),', ', 'ct =', num2str (CT/PI ), '* PI') strcat ('Robot seat: P = ', num2str (PL (1) + Pr (1)/2 ),',', num2str (PL (2) + Pr (2)/2), ',', 'c = ', num2str (C/PI),' * PI '), strcat ('left and right wheel speed: VL = ', num2str (VL),', ', 'vr =', num2str (VR), ',', 'W = ', num2str (w),}); plot (PL (1) + Pr (1)/2, (PL (2) + Pr (2)/2, 'K * '); plot (PL (1), PL (2), 'ro'); plot (Pr (1), Pr (2), 'bo '); plot (Pt (1), Pt (2), 'K. ', 'linewidth', 4); plot (Report (3, :), report (4, :)); P = [(PL (1) + Pr (1 )) /2, (PL (2) + Pr (2)/2, c]; D = (P (1)-Pt (1 )). ^ 2 + (P (2)-Pt (2 )). ^ 2 ). ^ 0.5; Report (:, t) = [VL; VR; P (1); P (2)]; t = t + 1; % subplot (122 ); % plot (1: T-1, report (1, :) * 10, 'R. ', 1: T-1, Report (2, :) * 10,' B. ', 1: T-1, report (3, :), 'G', 1: T-1, report (4, :), 'C '); title ('analog photoelectric encoder pulse count'); % legend ('revolver count', 'right wheel count', 'x', 'y', 'location ', 'northwest'); pause (t); End subplot (122); plot (1: T-1, report (1, :) * 10, 'R. ', 1: T-1, Report (2, :) * 10,' B. ', 1: T-1, report (3, :), 'G', 1: T-1, report (4, :), 'C '); title ('analog photoelectric encoder pulse count'); legend ('revolver count', 'right wheel count', 'x', 'y', 'location', 'northwest '); end

Result:

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.