The rank of matrix algorithm Gaussian elimination determinant matrix

Source: Internet
Author: User
Tags define local

Learn the basic algorithms of matrices today

Gaussian elimination is a powerful tool for solving linear equations.

The basic idea is to transform the augmented matrix into a simplified ladder-shaped matrix by passing the elementary changes.

The following is the column main element Gaussian elimination method, the complexity of O (n^3).

It is easy to derive the determinant and rank algorithm according to the Gaussian elimination method.

Code:

/**********************************************************            ------------------                          ** Author Abyssalfish ***********************************************************/#include<cstdio>#include<iostream>#include<string>#include<cstring>#include<queue>#include<vector>#include<stack>#include<vector>#include<map>#include<Set>#include<algorithm>#include<cmath>//#include <bits/stdc++.h>using namespaceStd;typedefLong Longll;Const DoubleEPS = 1e-8; typedef vector<Double>vec;typedef Vector<vec>Mat;//O (n^3)VEC Gauss_jordan (Constmat& A,Constvec&b) {    intn =a.size (); Mat B (N,vec (n+1));//Augment Matrix     for(inti =0; I < n; i++)         for(intj =0; J < N; J + +) B[i][j] =A[i][j];  for(inti =0; I < n; i++) B[i][n] =B[i];  for(inti =0; I < n; i++){        intPIV = i;//maximum to determine the solution of no solution or infinite number         for(intj = i; J < N; J + +){            if(ABS (B[j][i] > abs (b[piv][i))) Piv =J; }        if(I! =piv) Swap (B[i],b[piv]); if(ABS (B[i][i]) < EPS)returnVec (); //assuming that the coefficients are changed to 1, only the part that affects the back is calculated.         for(intj = N; J > i; j--) B[i][j]/=B[i][i];  for(intj =0; J < N; J + +)if(I! =j) { for(intK = i+1; K <= N; k++) b[j][k]-= b[j][i]*B[i][k];    }} Vec x (n);  for(inti =0; I < n; i++) X[i] =B[i][n]; returnx;}DoubleDeterminant (Constmat&A) {    intn =a.size (); Mat B=A; DoubleDet =1; intSign =0;  for(inti =0; I < n; i++){        intPIV =i;  for(intj = i; J < N; J + +){            if(ABS (B[j][i] > abs (b[piv][i))) Piv =J; }        if(I! = PIV) swap (B[I],B[PIV]), sign ^=1; if(ABS (B[i][i]) < EPS)return 0; Det*=B[i][i];  for(intj = i+1; J < N; J + +) B[i][j]/=B[i][i];  for(intj = i+1; J < N; J + +) {             for(intK = i+1; K < n; k++) b[j][k]-= b[j][i]*B[i][k]; }    }    returnsign?-Det:det;}intRank_of_mat (Constmat&A) {    intn =a.size (); Mat B=A;  for(inti =0; I < n; i++){        intPIV =i;  for(intj = i; J < N; J + +){            if(ABS (B[j][i] > abs (b[piv][i))) Piv =J; }        if(I! =piv) Swap (B[i],b[piv]); if(ABS (B[i][i]) < EPS)returni;  for(intj = N; --j > i;) B[I][J]/=B[i][i];  for(intj = i+1; J < N; J + +) {             for(intK = i+1; K < n; k++) b[j][k]-= b[j][i]*B[i][k]; }    }    returnN;}DoubleRead () {DoubleT scanf"%LF", &t);returnt;}//#define LOCALintMain () {#ifdef LOCAL freopen ("In.txt","R", stdin);#endifVEC Alpha;    Mat A; intN; Puts ("Input a matrix");  while(~SCANF ("%d", &n) && n <=0) puts ("Input Invalid");    A.resize (n);  for(inti =0; I < n; i++){         for(intj =0; J < N; J + +{a[i].push_back (read ()); }} puts ("input a vector");  for(inti =0; I < n; i++) Alpha.push_back (read ()); Puts ("\nsolution"); Vec Sol=Gauss_jordan (A,alpha); if(Sol.size ()) { for(inti =0; I < n; i++) printf ("%lf%c", Sol[i], i!=n-1?' ':'\ n'); }Else{puts ("Not unique"); } puts ("\ndeterminant"); printf ("%lf\n", determinant (A)); Puts ("\nrank"); printf ("%d\n", Rank_of_mat (A)); return 0;}

Test examples

In practice, if you need this information at the same time to calculate the B-matrix only once, it improves efficiency.

The rank of matrix algorithm Gaussian elimination determinant matrix

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.