The main idea: to give an untidy road surface, you can increase or decrease a road surface, all need the cost of |x-x ' |, the road to the correction to a monotonous or monotonous non-rising minimum cost is how much.
Idea: The height span of the road is a little big ah, first discretization. After F[i][j], the road surface is guaranteed to be monotonically non-descending and the maximum height for the minimum cost of J is how much, using a prefix and optimization. Monotonous does not rise also the same, simple DP water over.
CODE:
#include <map> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm > #define MAX 2010#define INF 0x3f3f3f3fusing namespace std; int Cnt,src[max];p air<int,int *> xx[max];map<int,int> G; int f[max][max],_f[max][max];//monotone not descending int g[max][max],_g[max][max];//monotone not ascending int main () {CIN >> cnt; for (int i = 1; I <= cnt; ++i) {scanf ("%d", &xx[i].first); Xx[i].second = &src[i]; } sort (xx + 1,xx + cnt + 1); int t = 0; for (int i = 1; I <= cnt; ++i) {if (i = = 1 | | Xx[i].first! = xx[i-1].first) ++t; *xx[i].second = t; G[t] = Xx[i].first; } memset (F,0x3f,sizeof (f)); memset (G,0x3f,sizeof (g)); for (int i = 1; I <= t; ++i) f[1][i] = G[1][i] = ABS (G[src[1]]-g[i]); for (int i = 1; I <= cnt; ++i) _f[i][0] = _g[i][t + 1] = INF; for (int i = 1; I <= t; ++i) _f[1][i] = min (_f[1][i-1],f[1][i]); for (int i = t; i; i.) _g[1][i] = min (_g[1][i + 1],g[1][i]); for (int i = 2; I <= cnt, ++i) {for (int j = 1; j <= cnt; ++j) {f[i][j] = _f[i-1][j] + ABS (G[J] -G[src[i]]); G[I][J] = _g[i-1][j] + ABS (G[J]-g[src[i]); } for (int j = 1; j <= T; ++j) _f[i][j] = min (_f[i][j-1],f[i][j]); for (int j = t; j;--j) _g[i][j] = min (_g[i][j + 1],g[i][j]); } int ans = INF; for (int i = 1; I <= t; ++i) ans = min (ans,min (f[cnt][i],g[cnt][i])); cout << ans << endl; return 0;}
Bzoj 1592 Usaco Making the Grade pavement trimming DP