Ultra-quicksort
Time Limit: 7000MS |
|
Memory Limit: 65536K |
Total Submissions: 43446 |
|
Accepted: 15822 |
Description
In this problem, you has to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping, adjacent sequence elements until the sequence is Sorted in ascending order. For the input sequence
9 1 0 5 4,
Ultra-quicksort produces the output
0 1 4 5 9.
Your task is to determine what many swap operations Ultra-quicksort needs to perform in order to sort a given input sequenc E.
Input
The input contains several test cases. Every test case begins with a line this contains a single integer n < 500,000-the length of the input sequence. Each of the following n lines contains a single integer 0≤a[i]≤999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must is processed.
Output
For every input sequence, your program prints a single line containing an integer number OP, the minimum number of swap op Erations necessary to sort the given input sequence.
Sample Input
59105431230
Sample Output
60
The algorithm class said this, just learn the reverse order of the method.
#include <iostream> #include <stdio.h> #define M 500010int a[m];int aux[m];long Long int ans;using namespace Std;void merge (int a[],int l,int mid,int h) {for (int k=l;k<=h;++k) aux[k]=a[k]; int i=l; int j=mid+1; for (int k=l;k<=h;++k) {if (i>mid) a[k]=aux[j++]; else if (j>h) a[k]=aux[i++]; else if (Aux[i]<aux[j]) a[k]=aux[i++]; else {a[k]=aux[j++]; ans+=mid-i+1;//the left side of the element is larger than the right side, then the left of the rest of the unfinished elements and the right side of the elements are formed in reverse! }}}void sort (int a[],int l,int h) {if (l>=h) return; int mid=l+ (H-L)/2; Sort (a,l,mid); Sort (a,mid+1,h); Merge (a,l,mid,h);} int main (int argc, char *argv[]) {//freopen ("2299.in", "R", stdin); int n; while (scanf ("%d", &n) &&n!=0) {ans=0; for (int i=0;i<n;++i) scanf ("%d", &a[i]); Sort (a,0,n-1); printf ("%lld\n", ans); } return 0;}
POJ 2299 ultra-quicksort (merge sort)