Catalogue
- Graphics driver Installation
- Cuda Installation
- CUDNN Installation
- TENSORFLOW-GPU Installation
this time using the host configuration:
CPU:i7-8700k graphics :gtx-1080ti
First, install the video driver
Open a Command Window (ctrl+alt+t)
sudo apt-get purge nvidia*sudo add-apt-repository ppa:graphics-drivers/ppasudo apt-sudoinstall nvidia-384 nvidia-settings
if the error Add-apt-repository does not exist, run the following code to resolve it:
sudo Install Software-properties-common python-software-properties
Verify that the installation is successful
Nvidia-smi
The following results show that the installation was successful
second, the installation of Cuda
As the cuda9.0+ version of the NVIDIA official website is defective, the installation option CUDA8.0
To Download the installation package:
Address: https://developer.nvidia.com/cuda-80-ga2-download-archive
After entering the download page, download CUDA8.0 (cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb) installation packages and
An upgrade package (CUDA-REPO-UBUNTU1604-8-0-LOCAL-CUBLAS-PERFORMANCE-UPDATE_8.0.61-1_AMD64.DEB)
Installation Steps :
1. Install the base package
sudo dpkg-i cuda-repo-ubuntu1604-8-0-local-ga2_8. 0.61-1_amd64.debsudo apt-get updatesudoinstall Cuda
2. Install the upgrade package
sudo dpkg-i cuda-repo-ubuntu1604-8-0-local-cublas-performance-update_8. 0.61-1_amd64.debsudo apt-get update sudo apt-get upgrade Cuda
Set Environment variables:
Add in. bashrc
Export path=/usr/local/cuda/bin${path:+: ${path}}export ld_library_path=/usr/local/cuda/lib64${ld_ library_path:+: ${ld_library_path}}export cuda_home=/usr/local/cuda
View the installation version
Cat /usr/local/cuda/version.txt
Output
8.0. A
third, installation Cudnn
cuDNN6.0 and CUDA8.0 are the best partners, so this time choose cuDNN6.0
To Download the installation package :
Address: Https://developer.nvidia.com/rdp/cudnn-download
Installation:
1. Copy the downloaded compressed package to the Cuda directory
sudo CP cudnn-8.0-linux-x64-v6. 0. Tgz/usr/local/cuda
2. Enter/usr/local/cuda to unzip the file and establish the connection
tar -zxvf cudnn-8.0-linux-x64-v6. 0 sudocp cuda/include/cudnn.h/usr/local/cuda/include/sudoCP cuda/lib64/libcudnn*/usr/local/cuda/lib64/-D
View CUDNN version information:
Cat grep 2
Output
#define Cudnn_major 6#define cudnn_minor 0#define cudnn_patchlevel 21--#define cudnn_ VERSION (cudnn_major * + Cudnn_minor * + cudnn_patchlevel)"driver_types.h "
detects if Cuda and CUDNN are installed successfully:
Go to test Catalog
// go to test Catalog:cd/usr/local/cuda-8.0/samples/1_utilities/devicequery// compilation environment Make-J4// run:./devicequery
result = PASS indicates successful installation
iv. installation of Tensorflow-gpu
// Install the command, to install which version of TENSORFLOW-GPU, use ' tensorflow-gpu==xx ' on the line Install tensorflow-gpu==1.4// Uninstall command pip uninstall Tensorflow-gpu
Test if the GPU is installed successfully
= TF. Session (CONFIG=TF. Configproto (Log_device_placement=true))
The output has the name of the GPU, memory and other information, indicating that TensorFlow can use the GPU
Ubuntu Server Installation Tensorflow-gpu