Seaborn Tutorial

Source: Internet
Author: User
Keywords seaborn seaborn tutorial seaborn python
Seaborn is a more advanced API package based on Matplotlib, which makes drawing easier. In most cases, Seaborn can make a very attractive graph. The datasets used in this example are all classic datasets provided by Seaborn, and the dataset file can be seen in GitHub. This blog only summarizes some for the convenience of bloggers to query. For details, you can see the official Seaborn API and example gallery. The official documents are well written.
1. set_ style( )  set( )
set_ Style () is used to set the theme. Seaborn has five preset themes: darkgrid, whitegrid, dark, white, and ticks. Default: darkgrid
import  matplotlib.pyplot  as plt
import seaborn as sns
sns.set_ style("whitegrid")
plt.plot ( np.arange (10))
plt.show ()
Set() can be used to set the background, palette and so on by setting parameters, which is more commonly used.
import seaborn as sns
import  matplotlib.pyplot  as plt
sns.set (style="white", palette="muted", color_ Codes = true) ාset() to set theme, palette is more commonly used
plt.plot ( np.arange (10))
plt.show ()
2. distplot( )  kdeplot( )
Distplot() is hist enhanced version, kdeplot() is density curve
import  matplotlib.pyplot  as plt
import seaborn as sns
Df_ iris =  pd.read_ csv('../input/ iris.csv )
fig, axes =  plt.subplots (1,2)
sns.distplot (df_ Iris ['petal length '], ax = axes [0], KDE = true, rug = true) ා KDE density curve rug marginal blanket
sns.kdeplot (df_ Iris ['petal length '], ax = axes [1], shade = true) × shade
plt.show ()
import numpy as np
import seaborn as sns
import  matplotlib.pyplot  as plt
sns.set ( palette="muted", color_ codes=True)
rs =  np.random.RandomState (10)
d =  rs.normal (size=100)
f, axes =  plt.subplots (2, 2, figsize=(7, 7), sharex=True)
sns.distplot (d, kde=False, color="b", ax=axes[0, 0])
sns.distplot (d, hist=False, rug=True, color="r", ax=axes[0, 1])
sns.distplot (d, hist=False, color="g", kde_ kws={"shade": True}, ax=axes[1, 0])
sns.distplot (d, color="m", ax=axes[1, 1])
plt.show ()
3. Boxplot ()
import  matplotlib.pyplot  as plt
import seaborn as sns
Df_ iris =  pd.read_ csv('../input/ iris.csv )
sns.boxplot (x = df_ iris['class'],y = df_ iris['sepal width'])
plt.show ()
import  matplotlib.pyplot  as plt
import seaborn as sns
tips =  pd.read_ csv('../input/ tips.csv )
sns.set (style = "ticks") ා set theme
sns.boxplot (x="day", y="total_ Bill ", hue = sex", data = tips, palette = "prgn"), palette palette
plt.show ()
4. joint distribution jointplot ()
tips =  pd.read_ csv('../input/ tips.csv The correlation coefficient is shown in the upper right corner
sns.jointplot ("total_ bill", "tip", tips)
plt.show ()
tips =  pd.read_ csv('../input/ tips.csv )
sns.jointplot ("total_ bill", "tip", tips, kind='reg')
plt.show ()
5. Heatmap ()
internal_ chars = ['full_ sq', 'life_ sq', 'floor', 'max_ floor', 'build_ year', 'num_ room', 'kitch_ sq', 'state', 'price_ doc']
corrmat = train[internal_ chars].corr()
f, ax =  plt.subplots (figsize=(10, 7))
plt.xticks (rotation='90')
sns.heatmap (corrmat, square=True, linewidths=.5, annot=True)
plt.show ()
6. Scatter ()
f, ax =  plt.subplots (figsize=(10, 7))
plt.scatter (x=train['full_ sq'], y=train['price_ doc'], c='r')
plt.xlim (0,500)
plt.show ()
7. Pointplot draws the relationship between variables
grouped_ df = train_ df.groupby ('floor')['price_ doc'].aggregate( np.median ).reset_ index()
plt.figure (figsize=(12,8))
sns.pointplot (grouped_ df.floor.values , grouped_ df.price_ doc.values , alpha=0.8, color=color[2])
plt.ylabel ('Median Price', fontsize=12)
plt.xlabel ('Floor number', fontsize=12)
plt.xticks (rotation='vertical')  plt.show ()
8. pairplot( )
import  matplotlib.pyplot  as plt
import seaborn as sns
data =  pd.read_ csv("../input/ iris.csv ""
sns.set () ා use default color
sns.pairplot (data, hue = class) ා hue select the classification column
plt.show ()
import seaborn as sns
import  matplotlib.pyplot  as plt
iris =  pd.read_ csv('../input/ iris.csv )
sns.pairplot (iris, vars=["sepal width", "sepal length"],hue='class',palette="husl")
plt.show ()
9.  FacetGrid( )
import seaborn as sns
import  matplotlib.pyplot  as plt
tips =  pd.read_ csv('../input/ tips.csv )
g =  sns.FacetGrid (tips, col="time",  row="smoker")
g = g.map( plt.hist , "total_ bill",  color="r")
plt.show ()
10.  barplot( )
f, ax= plt.subplots (figsize=(12,20))
#Original = H 'indicates horizontal display, and alpha indicates the depth of color
sns.barplot (y=group_ df.sub_ area.values , x=group_ df.price_ doc.values ,orient='h', alpha=0.8, color='red')
#Set the coordinate name and font size of Y-axis and x-axis
plt.ylabel ('price_ doc', fontsize=16)
plt.xlabel ('sub_ area', fontsize=16)
#Set the column subscript font of the X axis to be horizontal
plt.xticks (rotation='horizontal')
#Sets the font size of the y-axis subscript
plt.yticks (fontsize=15)
plt.show ()
Note: if the orientation is displayed vertically, remember y = group_ df.sub_ area.values , x=group_ df.price_ doc.values Change it
Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.