"Note" This series of articles and the use of the installation package/test data can be in the "big gift--spark Getting Started Combat series" Get 1, compile sparkSpark can be compiled in SBT and maven two ways, and then the deployment package is generated through the make-distribution.sh script. SBT compilation requires the installation of Git tools, and MAVEN installation requires MAVEN tools, both of which need to be carried out under the network,
"Note" This series of articles and the use of the installation package/test data can be in the "big gift--spark Getting Started Combat series" Get 1, compile sparkSpark can be compiled in SBT and maven two ways, and then the deployment package is generated through the make-distribution.sh script. SBT compilation requires the installation of Git tools, and MAVEN installation requires MAVEN tools, both of which need to be carried out under the network,
This course focuses onSpark, the hottest, most popular and promising technology in the big Data world today. In this course, from shallow to deep, based on a large number of case studies, in-depth analysis and explanation of Spark, and will contain completely from the enterprise real complex business needs to extract the actual case. The course will cover Scala programming, spark core programming,
Three, in-depth rddThe Rdd itself is an abstract class with many specific implementations of subclasses:
The RDD will be calculated based on partition:
The default partitioner is as follows:
The documentation for Hashpartitioner is described below:
Another common type of partitioner is Rangepartitioner:
The RDD needs to consider the memory policy in the persistence:
Spark offers many storagelevel
"Note" This series of articles, as well as the use of the installation package/test data can be in the "big gift –spark Getting Started Combat series" get1 Spark Streaming Introduction1.1 OverviewSpark Streaming is an extension of the Spark core API that enables the processing of high-throughput, fault-tolerant real-time streaming data. Support for obtaining data
1. Introduction
The Spark-submit script in the Spark Bin directory is used to start the application on the cluster. You can use the Spark for all supported cluster managers through a unified interface, so you do not have to specifically configure your application for each cluster Manager (It can using all Spark ' s su
The main contents of this section
Hadoop Eco-Circle
Spark Eco-Circle
1. Hadoop Eco-CircleOriginal address: http://os.51cto.com/art/201508/487936_all.htm#rd?sukey= a805c0b270074a064cd1c1c9a73c1dcc953928bfe4a56cc94d6f67793fa02b3b983df6df92dc418df5a1083411b53325The key products in the Hadoop ecosystem are given:Image source: http://www.36dsj.com/archives/26942The following is a brief introduction to the products1 HadoopApache's Hadoop p
1, first download the image to local. https://hub.docker.com/r/gettyimages/spark/~$ Docker Pull Gettyimages/spark2, download from https://github.com/gettyimages/docker-spark/blob/master/docker-compose.yml to support the spark cluster DOCKER-COMPOSE.YML fileStart it$ docker-compose Up$ docker-compose UpCreating spark_master_1Creating spark_worker_1Attaching to Sp
Step 1: Test spark through spark Shell
Step 1:Start the spark cluster. This is very detailed in the third part. After the spark cluster is started, webui is as follows:
Step 2: Start spark shell:
In this case, you can view the shell in the following Web console:
S
Spark Communication Module
1, Spark Cluster Manager can have local, standalone, mesos, yarn and other deployment methods, in order to
Centralized communication mode
1, RPC remote produce call
Spark Communication mechanism:
The advantages and characteristics of Akka are as follows:
1, parallel and distributed: Akka in design with asynchronous communication and dis
Step 1: software required by the spark cluster;
Build a spark cluster on the basis of the hadoop cluster built from scratch in Articles 1 and 2. We will use the spark 1.0.0 version released in May 30, 2014, that is, the latest version of spark, to build a spark Cluster Based
Start and view the cluster status
Step 1: Start the hadoop cluster, which is explained in detail in the second lecture. I will not go into details here:
After the JPS command is run on the master machine, the following process information is displayed:
When JPS is used on slave1 and slave2, the following process information is displayed:
Step 2: Start the spark Cluster
On the basis of the successful start of the hadoop cluster, to start the
Tags: spark books spark hotspot Spark Technology spark tutorial
The command to end historyserver is as follows:
Step 4: Verify the hadoop distributed Cluster
First, create two directories on the HDFS file system. The creation process is as follows:
/Data/wordcount in HDFS is used to store the data f
Next package, use Project structure's artifacts:Using the From modules with dependencies:Select Main Class:Click "OK":Change the name to Sparkdemojar:Because Scala and spark are installed on each machine, you can delete both Scala and spark-related jar files:Next Build:Select "Build Artifacts":The rest of the operation is to upload the jar package to the server, and then execute the
Next package, use Project structure's artifacts:Using the From modules with dependencies:Select Main Class:Click "OK":Change the name to Sparkdemojar:Because Scala and spark are installed on each machine, you can delete both Scala and spark-related jar files:Next Build:Select "Build Artifacts":The rest of the operation is to upload the jar package to the server, and then execute the
Create a Scala idea project:Click "Next":Click "Finish" to complete the project creation:To modify an item's properties:First modify the Modules option:Create two folders under SRC and change their properties to source:Then modify the libraries:Because you want to develop the spark program, you need to bring in the jar packages that spark needs to develop:After the import package is complete, create a packa
Create a Scala idea project:Click "Next":Click "Finish" to complete the project creation:To modify an item's properties:First modify the Modules option:Create two folders under SRC and change their properties to source:Then modify the libraries:Because you want to develop the spark program, you need to bring in the jar packages that spark needs to develop:After the import package is complete, create a packa
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.