ReLu (rectified Linear Units) activation function paper Reference: Deep Sparse rectifier Neural Networks (interesting one paper) Origin: Traditional activation function, neuron activation frequency study, Sparse activation Traditional sigmoid system
What is an activation function
When biologists study the working mechanism of neurons in the brain, it is found that if a neuron starts working, the neuron is a state of activation, and I think that's probably why a cell in the neural network model
This article and we share the main is the machine learning activation function related content, together look at it, hope to learn from you Machine Learning helpful. The activation function converts the last layer of the neural network output as
Content Summary:(1) introduce the basic principle of neural network(2) Aforge.net method of realizing Feedforward neural network(3) the method of Matlab to realize feedforward neural network---cited Examples In this paper, fisher's iris data set is
Transfer from http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.htmlThe main contents of this paper include: (1) Introduce the basic principle of neural network, (2) Aforge.net the method of realizing Feedforward neural Network, (3) Matlab to
In peacetime research, hope every night idle down when, all learn a machine learning algorithm, today see a few good genetic algorithm articles, summed up here.1 Neural network Fundamentals Figure 1. Artificial neural element modelThe X1~XN is an
This digest from: "Pattern recognition and intelligent computing--matlab technology implementation of the third edition" and "Matlab Neural network 43 Case Analysis"
"Note" The Blue font for your own understanding part
The advantages of radial basis
bp neural network in BP for back propagation shorthand, the earliest it was by Rumelhart, McCelland and other scientists in 1986, Rumelhart and in nature published a very famous article "Learning R Epresentations by back-propagating errors ". With
Why should I introduce an activation function?If you don't have to activate the function (actually equivalent to the excitation function is f (x) =x), in this case you each layer of output is a linear function of the upper input, it is easy to
This series of articles is about UFLDL Tutorial's learning notes.Neural Networks
For a supervised learning problem, the training sample input form is (x (i), Y (i)). Using neural networks we can find a complex nonlinear hypothesis H (x (i))
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.